This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364466 #20 Oct 18 2023 04:51:46 %S A364466 0,0,1,2,6,14,34,74,164,345,734,1523,3161,6488,13302,27104,55150, %T A364466 111823,226443,457586,923721,1862183,3751130,7549354,15184291, %U A364466 30521675,61322711,123151315,247230601,496158486,995447739,1996668494,4004044396,8027966324,16092990132,32255168125 %N A364466 Number of subsets of {1..n} where some element is a difference of two consecutive elements. %C A364466 In other words, the elements are not disjoint from their own first differences. %F A364466 a(n) = 2^n - A364463(n). - _Chai Wah Wu_, Sep 26 2023 %e A364466 The a(0) = 0 through a(5) = 14 subsets: %e A364466 . . {1,2} {1,2} {1,2} {1,2} %e A364466 {1,2,3} {2,4} {2,4} %e A364466 {1,2,3} {1,2,3} %e A364466 {1,2,4} {1,2,4} %e A364466 {1,3,4} {1,2,5} %e A364466 {1,2,3,4} {1,3,4} %e A364466 {1,4,5} %e A364466 {2,3,5} %e A364466 {2,4,5} %e A364466 {1,2,3,4} %e A364466 {1,2,3,5} %e A364466 {1,2,4,5} %e A364466 {1,3,4,5} %e A364466 {1,2,3,4,5} %t A364466 Table[Length[Select[Subsets[Range[n]],Intersection[#,Differences[#]]!={}&]],{n,0,10}] %o A364466 (Python) %o A364466 from itertools import combinations %o A364466 def A364466(n): return sum(1 for l in range(n+1) for c in combinations(range(1,n+1),l) if not set(c).isdisjoint({c[i+1]-c[i] for i in range(l-1)})) # _Chai Wah Wu_, Sep 26 2023 %Y A364466 For differences of all pairs we have A093971, complement A196723. %Y A364466 For partitions we have A363260, complement A364467. %Y A364466 The complement is counted by A364463. %Y A364466 For subset-sums instead of differences we have A364534, complement A325864. %Y A364466 For strict partitions we have A364536, complement A364464. %Y A364466 A000041 counts integer partitions, strict A000009. %Y A364466 A008284 counts partitions by length, strict A008289. %Y A364466 A050291 counts double-free subsets, complement A088808. %Y A364466 A108917 counts knapsack partitions, strict A275972. %Y A364466 A325325 counts partitions with all distinct differences, strict A320347. %Y A364466 Cf. A011782, A212986, A237113, A325877, A325878, A326083, A363225. %K A364466 nonn %O A364466 0,4 %A A364466 _Gus Wiseman_, Jul 31 2023 %E A364466 a(21)-a(32) from _Chai Wah Wu_, Sep 26 2023 %E A364466 a(33)-a(35) from _Chai Wah Wu_, Sep 27 2023