This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364467 #10 Sep 26 2023 13:39:20 %S A364467 0,0,0,1,1,2,4,5,9,13,21,28,42,55,78,106,144,187,255,325,429,554,717, %T A364467 906,1165,1460,1853,2308,2899,3582,4468,5489,6779,8291,10173,12363, %U A364467 15079,18247,22124,26645,32147,38555,46285,55310,66093,78684,93674,111104 %N A364467 Number of integer partitions of n where some part is the difference of two consecutive parts. %C A364467 In other words, the parts are not disjoint from their own first differences. %e A364467 The a(3) = 1 through a(9) = 13 partitions: %e A364467 (21) (211) (221) (42) (421) (422) (63) %e A364467 (2111) (321) (2221) (431) (621) %e A364467 (2211) (3211) (521) (3321) %e A364467 (21111) (22111) (3221) (4221) %e A364467 (211111) (4211) (4311) %e A364467 (22211) (5211) %e A364467 (32111) (22221) %e A364467 (221111) (32211) %e A364467 (2111111) (42111) %e A364467 (222111) %e A364467 (321111) %e A364467 (2211111) %e A364467 (21111111) %t A364467 Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]!={}&]],{n,0,30}] %o A364467 (Python) %o A364467 from collections import Counter %o A364467 from sympy.utilities.iterables import partitions %o A364467 def A364467(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # _Chai Wah Wu_, Sep 26 2023 %Y A364467 For all differences of pairs parts we have A363225, complement A364345. %Y A364467 The complement is counted by A363260. %Y A364467 For subsets of {1..n} we have A364466, complement A364463. %Y A364467 The strict case is A364536, complement A364464. %Y A364467 These partitions have ranks A364537. %Y A364467 A000041 counts integer partitions, strict A000009. %Y A364467 A008284 counts partitions by length, strict A008289. %Y A364467 A050291 counts double-free subsets, complement A088808. %Y A364467 A323092 counts double-free partitions, ranks A320340. %Y A364467 A325325 counts partitions with distinct first differences. %Y A364467 Cf. A002865, A025065, A093971, A108917, A196723, A229816, A236912, A237113, A237667, A320347, A326083. %K A364467 nonn %O A364467 0,6 %A A364467 _Gus Wiseman_, Jul 31 2023