cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364472 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^6.

This page as a plain text file.
%I A364472 #13 Jul 27 2023 12:17:56
%S A364472 1,1,2,8,35,163,808,4162,22041,119325,657384,3673394,20769983,
%T A364472 118610807,683131766,3963486380,23144000681,135911263309,802143851323,
%U A364472 4755506884495,28306896506651,169110331570307,1013643450123455,6094125091837335,36739933169338731
%N A364472 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^6.
%H A364472 Seiichi Manyama, <a href="/A364472/b364472.txt">Table of n, a(n) for n = 0..1000</a>
%F A364472 a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k,k) * binomial(n+3*k,n-2*k) / (5*k+1) = Sum_{k=0..floor(n/2)} binomial(n+4*k,6*k) * binomial(6*k,k) / (5*k+1).
%o A364472 (PARI) a(n) = sum(k=0, n\2, binomial(n+4*k, k)*binomial(n+3*k, n-2*k)/(5*k+1));
%Y A364472 Cf. A000045, A000108, A001006, A182454, A186996, A364476.
%Y A364472 Cf. A002295.
%K A364472 nonn
%O A364472 0,3
%A A364472 _Seiichi Manyama_, Jul 26 2023