cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364476 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^7.

This page as a plain text file.
%I A364476 #15 Jul 27 2023 11:00:01
%S A364476 1,1,2,9,44,226,1241,7093,41666,250260,1529993,9488398,59545909,
%T A364476 377451385,2413157855,15542535697,100753850132,656856027658,
%U A364476 4303970039402,28328599504756,187214549485759,1241775795647609,8263989319451514,55163575187733922
%N A364476 G.f. satisfies A(x) = 1 + x*A(x) + x^2*A(x)^7.
%H A364476 Seiichi Manyama, <a href="/A364476/b364476.txt">Table of n, a(n) for n = 0..1000</a>
%F A364476 a(n) = Sum_{k=0..floor(n/2)} binomial(n+5*k,k) * binomial(n+4*k,n-2*k) / (6*k+1) = Sum_{k=0..floor(n/2)} binomial(n+5*k,7*k) * binomial(7*k,k) / (6*k+1).
%o A364476 (PARI) a(n) = sum(k=0, n\2, binomial(n+5*k, k)*binomial(n+4*k, n-2*k)/(6*k+1));
%Y A364476 Cf. A000045, A000108, A001006, A182454, A186996, A364472.
%Y A364476 Cf. A002296, A364477.
%K A364476 nonn
%O A364476 0,3
%A A364476 _Seiichi Manyama_, Jul 26 2023