This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364488 #11 Feb 16 2025 08:34:06 %S A364488 7,4,3,9,1,7,1,8,7,8,6,9,7,6,7,9,7,4,9,3,5,9,6,1,8,0,6,4,6,3,5,3,4,5, %T A364488 1,2,7,1,0,4,3,1,8,7,5,0,2,2,8,7,5,1,1,5,3,1,4,3,4,6,5,4,6,0,4,7,5,6, %U A364488 9,0,8,8,6,4,2,4,0,4,6,8,5,2,3,6,9,3,8,1,3,1,1,6,3,8,5,1,9,7,1,5,6,3,7,1,9 %N A364488 Decimal expansion of zeta(2) * primezeta(2). %H A364488 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeZetaFunction.html">Prime Zeta Function</a>. %H A364488 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannZetaFunctionZeta2.html">Riemann Zeta Function zeta(2)</a>. %F A364488 Equals Sum_{k>=1} omega(k) / k^2, where omega(k) is the number of distinct primes dividing k (A001221). %e A364488 0.743917187869767974935961806463534512710431875022875115314346546... %t A364488 RealDigits[Zeta[2] PrimeZetaP[2], 10, 105][[1]] %o A364488 (PARI) zeta(2) * sumeulerrat(1/p, 2) \\ _Amiram Eldar_, Jul 28 2023 %Y A364488 Cf. A001221, A013661, A085548, A098198, A364490. %K A364488 nonn,cons %O A364488 0,1 %A A364488 _Ilya Gutkovskiy_, Jul 26 2023