This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364491 #15 Jul 27 2023 08:18:23 %S A364491 0,1,1,1,1,5,1,7,1,1,5,11,1,13,7,15,1,17,1,19,5,7,11,23,1,5,13,27,7, %T A364491 29,15,31,1,11,17,7,1,37,19,39,5,41,7,43,11,15,23,47,1,49,5,51,13,53, %U A364491 27,5,7,19,29,59,15,61,31,63,1,65,11,67,17,23,7,71,1,73,37,15,19,11,39,79,5,3,41,83,7,17,43,87 %N A364491 a(n) = n / gcd(n, A163511(n)). %C A364491 Numerator of n / A163511(n). %H A364491 Antti Karttunen, <a href="/A364491/b364491.txt">Table of n, a(n) for n = 0..16383</a> %F A364491 a(n) = n / A364255(n) = n / gcd(n, A163511(n)). %o A364491 (PARI) %o A364491 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; %o A364491 A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429 %o A364491 A163511(n) = if(!n,1,A005940(1+A054429(n))) %o A364491 A364491(n) = (n/gcd(n, A163511(n))); %o A364491 (Python) %o A364491 from math import gcd %o A364491 from sympy import nextprime %o A364491 def A364491(n): %o A364491 c, p, k = 1, 1, n %o A364491 while k: %o A364491 c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length()) %o A364491 k >>= s+1 %o A364491 return n//gcd(c*p,n) # _Chai Wah Wu_, Jul 26 2023 %Y A364491 Cf. A163511, A364255, A364492 (denominators), A364493, A364494 (positions of 1's). %K A364491 nonn,frac %O A364491 0,6 %A A364491 _Antti Karttunen_, Jul 26 2023