This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364493 #15 Jul 27 2023 08:20:01 %S A364493 0,2,2,1,2,45,1,35,2,3,45,275,1,195,35,105,2,1377,3,2375,45,175,275, %T A364493 1127,1,45,195,945,35,609,105,341,2,891,1377,875,3,13875,2375,13377, %U A364493 45,9225,175,10535,275,735,1127,5687,1,6615,45,8925,195,5565,945,35,35,399,609,3245,105,2013,341,819,2,47385,891 %N A364493 a(n) = A364491(n) * A364492(n). %H A364493 Antti Karttunen, <a href="/A364493/b364493.txt">Table of n, a(n) for n = 0..16383</a> %F A364493 a(n) = lcm(n, A163511(n)) / A364255(n). %F A364493 a(n) = 1 <=> A364258(n) = 0 <=> A364288(n) = 0. %o A364493 (PARI) %o A364493 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; %o A364493 A054429(n) = ((3<<#binary(n\2))-n-1); %o A364493 A163511(n) = if(!n,1,A005940(1+A054429(n))) %o A364493 A364493(n) = { my(u=A163511(n)); (n/gcd(n,u))*(u/gcd(n,u)); }; %o A364493 (Python) %o A364493 from math import gcd %o A364493 from sympy import nextprime %o A364493 def A364493(n): %o A364493 c, p, k = 1, 1, n %o A364493 while k: %o A364493 c *= (p:=nextprime(p))**(s:=(~k&k-1).bit_length()) %o A364493 k >>= s+1 %o A364493 return n*c*p//gcd(c*p,n)**2 # _Chai Wah Wu_, Jul 26 2023 %Y A364493 Cf. A163511, A364255, A364258, A364288, A364491, A364492. %K A364493 nonn %O A364493 0,2 %A A364493 _Antti Karttunen_, Jul 26 2023