This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364496 #21 Sep 02 2023 11:24:53 %S A364496 0,3,6,12,24,48,96,192,384,768,1536,3072,6144,12288,16383,24576,32766, %T A364496 49152,65532,98304,131064,196608,262128,393216,524256,786432,1048512, %U A364496 1572864,2097024,3145728,4194048,6291456,8388096,12582912,16776192,25165824,33552384,50331648,67104768,100663296,134209536,201326592 %N A364496 Numbers k such that k is a multiple of A163511(k). %C A364496 If n is present, then 2*n is also present, and vice versa. %C A364496 A007283 is included as a subsequence, because it gives the known fixed points of map n -> A163511(n). %C A364496 Sequence A243071(A364497(.)) sorted into ascending order. %H A364496 Antti Karttunen, <a href="/A364496/b364496.txt">Table of n, a(n) for n = 1..53</a> %e A364496 16383 is present, because A163511(16383) = 43, as 16383 = 2^14 - 1 and A000040(14) = 43, and 43 is a factor of 16383 = 3*43*127. %e A364496 536870895 is present, because A163511(536870895) = 1177 (11*107), which divides 536870895 (3*5*11*47*107*647). See also example in A364498. %o A364496 (PARI) %o A364496 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t }; %o A364496 A054429(n) = ((3<<#binary(n\2))-n-1); %o A364496 A163511(n) = if(!n,1,A005940(1+A054429(n))) %o A364496 isA364496(n) = !(n%A163511(n)); %Y A364496 Positions of 1's in A364492. %Y A364496 Subsequence of A364292. %Y A364496 Cf. A007283 (subsequence), A163511, A364963 (odd terms). %Y A364496 Cf. also A364295, A364494, A364497, A364498. %K A364496 nonn %O A364496 1,2 %A A364496 _Antti Karttunen_, Jul 27 2023