cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364497 Numbers k such that k divides A243071(k).

This page as a plain text file.
%I A364497 #7 Jul 27 2023 08:17:54
%S A364497 1,3,6,12,24,43,48,86,96,172,192,344,384,688,768,1177,1376,1536,2354,
%T A364497 2752,3072,3503,4708,5504,6144,7006,9416,11008,12288,14012,18832,
%U A364497 22016,24576,28024,37664,44032,49152,49477,56048,75328,88064,98304,98954,112096,150656,169413,176128,196608,197908,224192,301312,338826
%N A364497 Numbers k such that k divides A243071(k).
%C A364497 If n is present, then 2*n is also present, and vice versa.
%C A364497 A007283 is included as a subsequence, because it gives the known fixed points of map n -> A163511(n).
%C A364497 Sequence A163511(A364496(.)) sorted into ascending order.
%H A364497 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%o A364497 (PARI)
%o A364497 A054429(n) = ((3<<#binary(n\2))-n-1); \\ From A054429
%o A364497 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A364497 A243071(n) = if(n<=2, n-1, A054429(A156552(n)));
%o A364497 isA364497(n) = !(A243071(n)%n);
%Y A364497 Cf. A163511, A243071.
%Y A364497 Cf. A007283 (subsequence), A364498 (odd terms).
%Y A364497 Cf. also A364295, A364494, A364496.
%K A364497 nonn
%O A364497 1,2
%A A364497 _Antti Karttunen_, Jul 27 2023