A364525 a(n) is the number of distinct ways to partition the set {1,2,...,n} into nonempty subsets such that the sum of the pi(x)*(pi(x) + 1)/2 values of each subset's size x equals n, where pi() is the prime counting function given by A000720.
0, 0, 1, 1, 2, 5, 9, 18, 36, 73, 145, 290, 580, 1159, 2319, 4637, 9273, 18544, 37083, 74157, 148330, 296658, 593311, 1186613, 2373208, 4746380, 9492687, 18985447, 37970821, 75941497, 151882704, 303764828, 607528497, 1215054675, 2430104713, 4860217541
Offset: 1
Keywords
Programs
-
Mathematica
p[n_] := p[n] = PrimePi[n]; pv[n_] := pv[n] = p[n]*(p[n] + 1)/2; v[n_, k_] := v[n, k] = Module[{c = 0, i = 1}, If[k == 1, Return[If[pv[n] == n, 1, 0]]]; While[i < n - k + 2, If[pv[i] <= n, c += v[n - i, k - 1]]; i++]; c]; a[n_] := a[n] = Module[{c = 0, k = 1}, While[k <= n, c += v[n, k]; k++]; c]; Table[a[n], {n, 1, 36}]