This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364532 #10 Aug 03 2023 09:04:25 %S A364532 12,24,30,36,40,48,60,63,70,72,80,84,90,96,108,112,120,126,132,140, %T A364532 144,150,154,156,160,165,168,180,189,192,198,200,204,210,216,220,224, %U A364532 228,240,252,264,270,273,276,280,286,288,300,308,312,315,320,324,325,330 %N A364532 Positive integers with a prime index equal to the sum of prime indices of some nonprime divisor. Heinz numbers of a variation of sum-full partitions. %C A364532 First differs from A299729 (non-knapsack) in lacking 525: {2,3,3,4}. %C A364532 First differs from A325777 in having 462: {1,2,4,5} and lacking 675:{2,2,2,3,3}. %C A364532 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %C A364532 These are the Heinz numbers of partitions containing the sum of some non-singleton submultiset. %e A364532 The terms together with their prime indices begin: %e A364532 12: {1,1,2} %e A364532 24: {1,1,1,2} %e A364532 30: {1,2,3} %e A364532 36: {1,1,2,2} %e A364532 40: {1,1,1,3} %e A364532 48: {1,1,1,1,2} %e A364532 60: {1,1,2,3} %e A364532 63: {2,2,4} %e A364532 70: {1,3,4} %e A364532 72: {1,1,1,2,2} %e A364532 80: {1,1,1,1,3} %e A364532 84: {1,1,2,4} %e A364532 90: {1,2,2,3} %e A364532 96: {1,1,1,1,1,2} %t A364532 Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]!={}&] %Y A364532 Partitions not of this type are counted by A237667, strict A364349. %Y A364532 Partitions of this type are counted by A237668, strict A364272. %Y A364532 The binary complement is A364461, re-usable A364347 (counted by A364345). %Y A364532 The binary version is A364462, re-usable A364348 (counted by A363225). %Y A364532 The complement is A364531. %Y A364532 Subsets of this type are counted by A364534, complement A151897. %Y A364532 A000005 counts divisors, nonprime A033273, composite A055212. %Y A364532 A001222 counts prime indices. %Y A364532 A108917 counts knapsack partitions, strict A275972, for subsets A325864. %Y A364532 A112798 lists prime indices, sum A056239. %Y A364532 A299701 counts distinct subset-sums of prime indices. %Y A364532 A299702 ranks knapsack partitions, complement A299729. %Y A364532 Cf. A085489, A088809, A093971, A236912, A237113, A301900, A326083, A364350. %K A364532 nonn %O A364532 1,1 %A A364532 _Gus Wiseman_, Aug 01 2023