This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364534 #14 Jan 27 2024 19:19:17 %S A364534 0,0,0,1,3,10,27,68,156,357,775,1667,3505,7303,15019,30759,62489, %T A364534 126619,255542,514721,1034425,2076924,4164650,8346306,16715847, %U A364534 33467324,66982798,134040148,268179417,536510608,1073226084,2146759579,4293930436,8588485846,17177799658 %N A364534 Number of subsets of {1..n} containing some element equal to the sum of two or more distinct other elements. A variation of sum-full subsets without re-used elements. %H A364534 Andrew Howroyd, <a href="/A364534/b364534.txt">Table of n, a(n) for n = 0..85</a> %F A364534 a(n) = 2^n - A151897(n). - _Andrew Howroyd_, Jan 27 2024 %e A364534 The a(0) = 0 through a(5) = 10 subsets: %e A364534 . . . {1,2,3} {1,2,3} {1,2,3} %e A364534 {1,3,4} {1,3,4} %e A364534 {1,2,3,4} {1,4,5} %e A364534 {2,3,5} %e A364534 {1,2,3,4} %e A364534 {1,2,3,5} %e A364534 {1,2,4,5} %e A364534 {1,3,4,5} %e A364534 {2,3,4,5} %e A364534 {1,2,3,4,5} %t A364534 Table[Length[Select[Subsets[Range[n]],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,10}] %Y A364534 The binary version is A088809, complement A085489. %Y A364534 The complement is counted by A151897. %Y A364534 The complement for partitions is A237667, ranks A364531. %Y A364534 For partitions we have A237668, ranks A364532. %Y A364534 For strict partitions we have A364272, complement A364349. %Y A364534 A108917 counts knapsack partitions, strict A275972. %Y A364534 A236912 counts sum-free partitions w/o re-used parts, complement A237113. %Y A364534 Cf. A007865, A093971, A323092, A325862, A326083, A363225, A364345, A364346, A364348, A364350, A364533, A364670. %K A364534 nonn %O A364534 0,5 %A A364534 _Gus Wiseman_, Aug 02 2023 %E A364534 a(16)-a(25) from _Chai Wah Wu_, Nov 14 2023 %E A364534 a(26) onwards (using A151897) added by _Andrew Howroyd_, Jan 27 2024