This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364536 #9 Sep 26 2023 13:39:09 %S A364536 0,0,0,1,0,0,2,1,2,2,5,4,6,6,9,11,16,17,23,25,30,38,48,55,65,78,92, %T A364536 106,127,146,176,205,230,277,315,366,421,483,552,640,727,829,950,1083, %U A364536 1218,1408,1577,1794,2017,2298,2561,2919,3255,3685,4116,4638,5163 %N A364536 Number of strict integer partitions of n where some part is a difference of two consecutive parts. %C A364536 In other words, strict partitions with parts not disjoint from first differences. %e A364536 The a(3) = 1 through a(15) = 11 partitions (A = 10, B = 11, C = 12): %e A364536 21 . . 42 421 431 63 532 542 84 742 743 A5 %e A364536 321 521 621 541 632 642 841 752 843 %e A364536 631 821 651 A21 761 942 %e A364536 721 5321 921 5431 842 C21 %e A364536 4321 5421 6421 B21 6432 %e A364536 6321 7321 6431 6531 %e A364536 6521 7431 %e A364536 7421 7521 %e A364536 8321 8421 %e A364536 9321 %e A364536 54321 %t A364536 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Intersection[#,-Differences[#]]!={}&]],{n,0,30}] %o A364536 (Python) %o A364536 from collections import Counter %o A364536 from sympy.utilities.iterables import partitions %o A364536 def A364536(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), filter(lambda p:max(p[1].values(),default=1)==1,partitions(n,size=True))) if not set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # _Chai Wah Wu_, Sep 26 2023 %Y A364536 For all differences of pairs we have A363226, non-strict A363225. %Y A364536 For all non-differences of pairs we have A364346, strict A364345. %Y A364536 The strict complement is counted by A364464, non-strict A363260. %Y A364536 For subsets of {1..n} we have A364466, complement A364463. %Y A364536 The non-strict case is A364467, ranks A364537. %Y A364536 A000041 counts integer partitions, strict A000009. %Y A364536 A008284 counts partitions by length, strict A008289. %Y A364536 A323092 counts double-free partitions, strict A120641. %Y A364536 A325325 counts partitions with distinct first-differences, strict A320347. %Y A364536 Cf. A002865, A025065, A093971, A108917, A229816, A236912, A237113, A237667, A326083, A364347. %K A364536 nonn %O A364536 0,7 %A A364536 _Gus Wiseman_, Jul 31 2023