This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364537 #5 Aug 03 2023 09:04:40 %S A364537 6,12,18,21,24,30,36,42,48,54,60,63,65,66,70,72,78,84,90,96,102,108, %T A364537 114,120,126,130,132,133,138,140,144,147,150,154,156,162,165,168,174, %U A364537 180,186,189,192,195,198,204,210,216,222,228,231,234,240,246,252,258 %N A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts. %C A364537 In other words, partitions whose parts are not disjoint from their first differences. %C A364537 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %e A364537 The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence. %e A364537 The terms together with their prime indices begin: %e A364537 6: {1,2} %e A364537 12: {1,1,2} %e A364537 18: {1,2,2} %e A364537 21: {2,4} %e A364537 24: {1,1,1,2} %e A364537 30: {1,2,3} %e A364537 36: {1,1,2,2} %e A364537 42: {1,2,4} %e A364537 48: {1,1,1,1,2} %e A364537 54: {1,2,2,2} %e A364537 60: {1,1,2,3} %e A364537 63: {2,2,4} %e A364537 65: {3,6} %e A364537 66: {1,2,5} %e A364537 70: {1,3,4} %e A364537 72: {1,1,1,2,2} %e A364537 78: {1,2,6} %e A364537 84: {1,1,2,4} %e A364537 90: {1,2,2,3} %e A364537 96: {1,1,1,1,1,2} %t A364537 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A364537 Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&] %Y A364537 For all differences of pairs the complement is A364347, counted by A364345. %Y A364537 For all differences of pairs we have A364348, counted by A363225. %Y A364537 Subsets of {1..n} of this type are counted by A364466, complement A364463. %Y A364537 These partitions are counted by A364467, complement A363260. %Y A364537 The strict case is A364536, complement A364464. %Y A364537 A050291 counts double-free subsets, complement A088808. %Y A364537 A323092 counts double-free partitions, ranks A320340. %Y A364537 A325325 counts partitions with distinct first differences. %Y A364537 Cf. A002865, A025065, A093971, A108917, A196723, A229816, A236912, A237113, A237667, A320347, A326083. %K A364537 nonn %O A364537 1,1 %A A364537 _Gus Wiseman_, Aug 02 2023