cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.

This page as a plain text file.
%I A364537 #5 Aug 03 2023 09:04:40
%S A364537 6,12,18,21,24,30,36,42,48,54,60,63,65,66,70,72,78,84,90,96,102,108,
%T A364537 114,120,126,130,132,133,138,140,144,147,150,154,156,162,165,168,174,
%U A364537 180,186,189,192,195,198,204,210,216,222,228,231,234,240,246,252,258
%N A364537 Heinz numbers of integer partitions where some part is the difference of two consecutive parts.
%C A364537 In other words, partitions whose parts are not disjoint from their first differences.
%C A364537 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
%e A364537 The partition {3,4,5,7} with Heinz number 6545 has first differences (1,1,2) so is not in the sequence.
%e A364537 The terms together with their prime indices begin:
%e A364537    6: {1,2}
%e A364537   12: {1,1,2}
%e A364537   18: {1,2,2}
%e A364537   21: {2,4}
%e A364537   24: {1,1,1,2}
%e A364537   30: {1,2,3}
%e A364537   36: {1,1,2,2}
%e A364537   42: {1,2,4}
%e A364537   48: {1,1,1,1,2}
%e A364537   54: {1,2,2,2}
%e A364537   60: {1,1,2,3}
%e A364537   63: {2,2,4}
%e A364537   65: {3,6}
%e A364537   66: {1,2,5}
%e A364537   70: {1,3,4}
%e A364537   72: {1,1,1,2,2}
%e A364537   78: {1,2,6}
%e A364537   84: {1,1,2,4}
%e A364537   90: {1,2,2,3}
%e A364537   96: {1,1,1,1,1,2}
%t A364537 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A364537 Select[Range[100],Intersection[prix[#],Differences[prix[#]]]!={}&]
%Y A364537 For all differences of pairs the complement is A364347, counted by A364345.
%Y A364537 For all differences of pairs we have A364348, counted by A363225.
%Y A364537 Subsets of {1..n} of this type are counted by A364466, complement A364463.
%Y A364537 These partitions are counted by A364467, complement A363260.
%Y A364537 The strict case is A364536, complement A364464.
%Y A364537 A050291 counts double-free subsets, complement A088808.
%Y A364537 A323092 counts double-free partitions, ranks A320340.
%Y A364537 A325325 counts partitions with distinct first differences.
%Y A364537 Cf. A002865, A025065, A093971, A108917, A196723, A229816, A236912, A237113, A237667, A320347, A326083.
%K A364537 nonn
%O A364537 1,1
%A A364537 _Gus Wiseman_, Aug 02 2023