This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364549 #17 Jul 29 2023 01:21:07 %S A364549 1,3,5,97,345,549,1093,64621,671515,3280317,8957089 %N A364549 Odd numbers k that divide A005941(k). %C A364549 Sequence A005940(A364547(.)) sorted into ascending order. %C A364549 Odd numbers k such that k divides 1+A156552(k). %C A364549 The first ten terms factored: %C A364549 1 (unity) %C A364549 3 (prime) %C A364549 5 (prime) %C A364549 97 (prime) %C A364549 345 = 3*5*23 %C A364549 549 = 3^2 * 61 %C A364549 1093 (prime) %C A364549 64621 (prime) %C A364549 671515 = 5*13*10331 %C A364549 3280317 = 3*79*13841. %C A364549 Primes p present are those that occur as factors of 1 + 2^(A000720(p)-1). %o A364549 (PARI) %o A364549 A005941(n) = { my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1])-1); res += (p * p2 * (2^(f[i, 2])-1)); p2 <<= f[i, 2]); (1+res) }; \\ (After _David A. Corneth_'s program for A156552) %o A364549 isA364549(n) = ((n%2)&&!(A005941(n)%n)); %o A364549 (Python) %o A364549 from itertools import count, islice %o A364549 from sympy import primepi, factorint %o A364549 def A364549_gen(startvalue=1): # generator of terms >= startvalue %o A364549 for n in count(max(startvalue+(startvalue&1^1),1),2): %o A364549 if not (sum(pow(2,i+int(primepi(p))-1,n) for i, p in enumerate(factorint(n, multiple=True)))+1) % n: %o A364549 yield n %o A364549 A364549_list = list(islice(A364549_gen(),8)) # _Chai Wah Wu_, Jul 28 2023 %Y A364549 Odd terms in A364548. %Y A364549 Cf. A000720, A005940, A005941, A156552. %Y A364549 Cf. also A364498, A364547, A364551. %K A364549 nonn,more %O A364549 1,2 %A A364549 _Antti Karttunen_, Jul 28 2023 %E A364549 a(11) from _Chai Wah Wu_, Jul 28 2023