A364554 a(n) = number of primes of the form T(k)/n, for some k, where T(k)=A000217(k) is a triangular number.
1, 2, 3, 1, 3, 2, 2, 1, 3, 1, 2, 2, 1, 2, 4, 1, 0, 2, 1, 1, 4, 2, 2, 2, 1, 2, 2, 0, 1, 3, 1, 0, 4, 1, 3, 2, 2, 1, 3, 2, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 4, 1, 1, 3, 1, 1, 4, 1, 1, 3, 1, 0, 2, 1, 2, 1, 0, 2, 2, 2, 0, 0, 1, 1, 4, 1, 1, 2, 1, 0, 2, 1, 2, 2, 2, 2, 4, 0, 1, 4
Offset: 1
Keywords
Examples
a(15) = 4 since there are exactly 4 triangular numbers T(k) such that T(k) = 15*p, with p prime. T(9)/15 = 45/15 = 3, T(14)/15 = 105/15 = 7, T(29)/15 = 435/15 = 29 and T(30)/15 = 465/15 = 31. a(17) = 0 since there is no triangular number T(k) such that T(k) = 17*p, with p prime.
Crossrefs
Formula
Conjecture: a(n) = number of primes in the union of sets {(2*r -+ 1)/d; (r -+ 1)/(2*d)}, with d divisor of n and r = n/d.
Comments