This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364601 #58 Apr 24 2024 14:54:17 %S A364601 1,7,8,9,180,205,38998,45994,89080,726191,5540343,7491889,8690141, %T A364601 167535050,749387107,9945245922 %N A364601 Numbers m such that, if k is the number of digits of m, then for some r > 1, the sum of the k-th powers of the digits of m^r is equal to m. %C A364601 Corresponding r's: any, 4, 3, 2, 6, 2, 2, 2, 2, 2, 3, 2, 3, 3, 4, 3. %H A364601 René-Louis Clerc, <a href="https://hal.science/hal-03619147">Pleasant transformations and a new class of narcissistic perfect numbers</a>, hal-03619147, 2022-2023. %H A364601 René-Louis Clerc, <a href="https://hal.science/hal-04229895">The Perfect R-Narcissistic Numbers</a>, 2023. %H A364601 René-Louis Clerc, <a href="https://hal.science/hal-04376934">Perfect r-narcissistic numbers in any base</a>, hal-04376934, 2024. %H A364601 René-Louis Clerc, <a href="https://ut3-toulouseinp.hal.science/hal-04507547">Nombres S+P, maxSP, minSP et |P-S|</a>, hal-04507547 [math.nt], 2024. (In French) %e A364601 180 with r=6 satisfies: 180^6 = 34012224000000, 3^3 + 4^3 + 1 + 2^3 + 2^3 + 2^3 + 4^3 = 180. %o A364601 (PARI) SomP(n,p)={resu=0;for(i=1,#digits(n),resu+=(digits(n)[i])^p);resu} %o A364601 Ppdi(k,r)={for(n=10^(k-1),10^k,if(SomP(n^r,k)==n,print1(n,";")))} %Y A364601 Cf. A005188 (Armstrong's numbers, case r=1 in our terminology). %Y A364601 Cf. A066003, A066004, A065999 (for terms 7, 8 and 9). %K A364601 nonn,base,fini,more %O A364601 1,2 %A A364601 _René-Louis Clerc_, Jul 29 2023