This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364606 #17 Jul 31 2023 10:43:14 %S A364606 0,1,2,3,6,13,16,26,46,51,56,73,122,141,166,313,383 %N A364606 Numbers k such that the average digit of 2^k is an integer. %F A364606 { k : A001370(k) mod A034887(k) = 0 }. %e A364606 2^26 = 67108864 is an 8-digit number; its average digit is (6+7+1+0+8+8+6+4)/8 = 40/8 = 5, an integer, so 26 is a term. %p A364606 q:= n-> (l-> irem(add(i, i=l), nops(l))=0)(convert(2^n, base, 10)): %p A364606 select(q, [$0..400])[]; # _Alois P. Heinz_, Jul 29 2023 %t A364606 Select[Range[0, 2^12], IntegerQ@ Mean@ IntegerDigits[2^#] &] (* _Michael De Vlieger_, Jul 29 2023 *) %o A364606 (PARI) isok(k) = my(d=digits(2^k)); !(vecsum(d) % #d); \\ _Michel Marcus_, Jul 29 2023 %o A364606 (Python) %o A364606 from itertools import count, islice %o A364606 from gmpy2 import mpz, digits %o A364606 def A364606_gen(startvalue=0): # generator of terms >= startvalue %o A364606 m = mpz(1)<<max(startvalue,0) %o A364606 for k in count(max(startvalue,0)): %o A364606 s = digits(m) %o A364606 if not sum(int(d) for d in s) % len(s): %o A364606 yield k %o A364606 m <<= 1 %o A364606 A364606_list = list(islice(A364606_gen(),10)) # _Chai Wah Wu_, Jul 31 2023 %Y A364606 Cf. A000079, A001370, A034887, A061383. %K A364606 nonn,base %O A364606 1,3 %A A364606 _Jon E. Schoenfield_, Jul 29 2023