cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364615 Numbers k such that the average of the decimal digits of 2^k is closer to 9/2 (the expected average for random digits) than for any smaller power of 2.

This page as a plain text file.
%I A364615 #7 Aug 02 2023 13:46:22
%S A364615 0,1,2,8,14,20,29,47,62,80,113,134,182,206,281,287,299,326,419,500,
%T A364615 560,620,638,674,833,911,1271,1289,1376,1418,1583,1670,1814,2273,2753,
%U A364615 3365,3794,4127,4160,4202,4280,4292,4538,4553,4646,4805,4952,4979,5105,5276
%N A364615 Numbers k such that the average of the decimal digits of 2^k is closer to 9/2 (the expected average for random digits) than for any smaller power of 2.
%C A364615 The average of the digits of 2^k is never exactly 9/2, because the sum of digits cannot be divisible by 3.
%C A364615 Conjecture: for each term k > 1, digitsum(2^k) - (9/2)*number_of_digits(2^k) = 1/2 if k is odd, -1/2 if k is even. - _Jon E. Schoenfield_, Jul 30 2023
%e A364615    k |   2^k | average of digits | distance from 9/2 | new minimum?
%e A364615   ---+-------+-------------------+-------------------+-------------
%e A364615    0 |     1 |         1         |        7/2        |     yes
%e A364615    1 |     2 |         2         |        5/2        |     yes
%e A364615    2 |     4 |         4         |        1/2        |     yes
%e A364615    3 |     8 |         8         |        7/2        |
%e A364615    4 |    16 |        7/2        |         1         |
%e A364615    5 |    32 |        5/2        |         2         |
%e A364615    6 |    64 |         5         |        1/2        |
%e A364615    7 |   128 |       11/3        |        5/6        |
%e A364615    8 |   256 |       13/3        |        1/6        |     yes
%e A364615    9 |   512 |        8/3        |       11/6        |
%e A364615   10 |  1024 |        7/4        |       11/4        |
%e A364615   11 |  2048 |        7/2        |         1         |
%e A364615   12 |  4096 |       19/4        |        1/4        |
%e A364615   13 |  8192 |         5         |        1/2        |
%e A364615   14 | 16384 |       22/5        |        1/10       |     yes
%Y A364615 Cf. A000079, A001370, A034887, A364606.
%K A364615 nonn,base
%O A364615 1,3
%A A364615 _Pontus von Brömssen_ and _Jon E. Schoenfield_, Jul 29 2023