cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364618 Decimal expansion of Sum_{k>=0} erfc(k), where erfc(x) is the complementary error function.

Original entry on oeis.org

1, 1, 6, 1, 9, 9, 9, 0, 4, 7, 9, 4, 7, 1, 2, 6, 3, 6, 3, 5, 3, 2, 3, 0, 8, 3, 2, 2, 4, 5, 5, 7, 9, 7, 1, 7, 1, 1, 6, 6, 3, 4, 3, 5, 0, 6, 2, 2, 5, 8, 6, 8, 0, 3, 1, 2, 1, 6, 8, 2, 6, 3, 3, 2, 4, 1, 5, 9, 4, 1, 7, 5, 5, 0, 4, 9, 4, 0, 0, 2, 3, 8, 6, 4, 7, 8, 1, 3, 2, 8, 3, 6, 2, 6, 2, 8, 9, 3, 3, 5, 1, 8, 4, 4, 7
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2023

Keywords

Examples

			1.16199904794712636353230832245579717116634350622586...
		

Crossrefs

Cf. A099287.

Programs

  • Maple
    evalf(sum(erfc(k), k = 0 .. infinity), 120)
  • Mathematica
    RealDigits[N[Sum[Erfc[k], {k, 0, Infinity}], 120]][[1]]
  • PARI
    sumpos(k = 0, erfc(k))

Formula

Equals 1 + (2/Pi) * Integral_{x>=1} floor(x) * exp(-x^2) dx.
Equals 1/2 + 1/sqrt(Pi) + (4/sqrt(Pi)) * Sum_{k>=1} D(Pi*k)/(Pi*k), where D(x) is the Dawson function.
Equals (2/Pi)*Integral_{x=0..oo} (exp(x) - cos(x))*sin((x^2)/2)/(x*(cosh(x) - cos(x))) dx. - Velin Yanev, Oct 11 2024