cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364622 G.f. satisfies A(x) = 1/(1-x)^2 + x^2*A(x)^4.

This page as a plain text file.
%I A364622 #9 Jan 20 2024 14:44:56
%S A364622 1,2,4,12,45,182,779,3480,16005,75234,359893,1746268,8573477,42511646,
%T A364622 212587561,1070897000,5429174465,27679933778,141829437174,
%U A364622 729972918876,3772160853821,19563615260102,101797930474515,531293155760840,2780515192595481,14588670579665882
%N A364622 G.f. satisfies A(x) = 1/(1-x)^2 + x^2*A(x)^4.
%F A364622 a(n) = Sum_{k=0..floor(n/2)} binomial(n+4*k+1,6*k+1) * binomial(4*k,k) / (3*k+1).
%t A364622 Table[Sum[Binomial[n + 4 k + 1, 6 k + 1]*Binomial[4 k, k]/(3 k + 1), {k, 0, Floor[n/2]}], {n, 0, 30}] (* _Wesley Ivan Hurt_, Jan 20 2024 *)
%o A364622 (PARI) a(n) = sum(k=0, n\2, binomial(n+4*k+1, 6*k+1)*binomial(4*k, k)/(3*k+1));
%Y A364622 Cf. A086615, A086631.
%K A364622 nonn
%O A364622 0,2
%A A364622 _Seiichi Manyama_, Jul 30 2023