This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364656 #32 May 14 2024 07:06:22 %S A364656 1,1,4,45,2062,589602,1553173541 %N A364656 Number of strict interval closure operators on a set of n elements. %C A364656 A closure operator cl on a set X is strict if the empty set is closed; it is an interval if for every subset S of X, the statement that for all x,y in S, cl({x,y}) is a subset of S implies that S is closed. %C A364656 a(n) is also the number of interval convexities on a set of n elements (see Chepoi). %D A364656 G. M. Bergman. Lattices, Closure Operators, and Galois Connections. Springer, Cham. 2015. 173-212. %H A364656 Victor Chepoi, <a href="https://www.researchgate.net/publication/2407147_Separation_Of_Two_Convex_Sets_In_Convexity_Structures">Separation of Two Convex Sets in Convexity Structures</a> %H A364656 Dmitry I. Ignatov, <a href="https://github.com/dimachine/StrictIntervalClosures/">Supporting iPython code for counting strict interval closure operators up to n=6</a>, Github repository %H A364656 Wikipedia, <a href="https://en.wikipedia.org/wiki/Closure_operator">Closure operator</a> %e A364656 The a(3) = 45 set-systems are the following ({} and {1,2,3} not shown). %e A364656 {1} {1}{2} {1}{2}{3} {1}{2}{3}{12} {1}{2}{3}{12}{13} %e A364656 {2} {1}{3} {1}{2}{12} {1}{2}{3}{13} {1}{2}{3}{12}{23} %e A364656 {3} {2}{3} {1}{2}{13} {1}{2}{3}{23} {1}{2}{3}{13}{23} %e A364656 {12} {1}{12} {1}{2}{23} {1}{2}{12}{13} %e A364656 {13} {1}{13} {1}{3}{12} {1}{2}{12}{23} %e A364656 {23} {1}{23} {1}{3}{13} {1}{3}{12}{13} {1}{2}{3}{12}{13}{23} %e A364656 {2}{12} {1}{3}{23} {1}{3}{13}{23} %e A364656 {2}{13} {2}{3}{12} {2}{3}{12}{23} %e A364656 {2}{23} {2}{3}{13} {2}{3}{13}{23} %e A364656 {3}{12} {2}{3}{23} %e A364656 {3}{13} {1}{12}{13} %e A364656 {3}{23} {2}{12}{23} %e A364656 {3}{13}{23} %t A364656 Table[With[{closure = {X, set} |-> %t A364656 Intersection @@ Select[X, SubsetQ[#, set] &]}, %t A364656 Select[ %t A364656 Select[ %t A364656 Join[{{}, Range@n}, #] & /@ Subsets@Subsets[Range@n, {1, n - 1}], %t A364656 SubsetQ[#, Intersection @@@ Subsets[#, {2}]] &], %t A364656 X |-> %t A364656 AllTrue[Complement[Subsets@Range@n, X], %t A364656 S |-> \[Not] %t A364656 AllTrue[Subsets[S, {1, 2}], SubsetQ[S, closure[X, #]] &]]]] // %t A364656 Length, {n, 4}] %Y A364656 Cf. A334255, A358144, A358152, A356544. %K A364656 nonn,hard,more %O A364656 0,3 %A A364656 _Tian Vlasic_, Jul 31 2023 %E A364656 New offset and a(5)-a(6) from _Dmitry I. Ignatov_, Nov 14 2023