cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364661 Numerators of coefficients in expansion of (1 + x)^(3/4).

This page as a plain text file.
%I A364661 #9 Aug 02 2023 07:05:25
%S A364661 1,3,-3,5,-45,117,-663,1989,-49725,160225,-1057485,3556995,-48612265,
%T A364661 168273225,-1177912575,4161957765,-237231592605,851242773465,
%U A364661 -6147864475025,22326455198775,-325966245902115,1195209568307755,-8801088639357105,32525762362841475,-964930950097630425
%N A364661 Numerators of coefficients in expansion of (1 + x)^(3/4).
%e A364661 (1 + x)^(3/4) = 1 + 3*x/4 - 3*x^2/32 + 5*x^3/128 - 45*x^4/2048 + 117*x^5/8192 - 663*x^6/65536 + ...
%e A364661 Coefficients are 1, 3/4, -3/32, 5/128, -45/2048, 117/8192, -663/65536, ...
%t A364661 nmax = 24; CoefficientList[Series[(1 + x)^(3/4), {x, 0, nmax}], x] // Numerator
%t A364661 Table[Binomial[3/4, n], {n, 0, 24}] // Numerator
%o A364661 (PARI) my(x='x+O('x^30)); apply(numerator, Vec((1 + x)^(3/4))) \\ _Michel Marcus_, Aug 02 2023
%Y A364661 Denominators are A088802, A123854.
%Y A364661 Cf. A002596, A067002, A364658, A364660.
%K A364661 sign,frac
%O A364661 0,2
%A A364661 _Ilya Gutkovskiy_, Aug 01 2023