This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364675 #8 Aug 10 2023 07:11:48 %S A364675 1,1,2,3,4,4,7,7,10,12,15,15,26,25,35,45,55,60,86,94,126,150,186,216, %T A364675 288,328,407,493,610,699,896,1030,1269,1500,1816,2130,2620,3029,3654, %U A364675 4300,5165,5984,7222,8368,9976,11637,13771,15960,18978,21896,25815,29915 %N A364675 Number of integer partitions of n whose nonzero first differences are a submultiset of the parts. %C A364675 Conjecture: For subsets of {1..n} instead of partitions of n we have A101925. %C A364675 Conjecture: The strict version is A154402. %e A364675 The partition y = (3,2,1,1) has first differences (1,1,0), and (1,1) is a submultiset of y, so y is counted under a(7). %e A364675 The a(1) = 1 through a(8) = 10 partitions: %e A364675 (1) (2) (3) (4) (5) (6) (7) (8) %e A364675 (11) (21) (22) (221) (33) (421) (44) %e A364675 (111) (211) (2111) (42) (2221) (422) %e A364675 (1111) (11111) (222) (3211) (2222) %e A364675 (2211) (22111) (4211) %e A364675 (21111) (211111) (22211) %e A364675 (111111) (1111111) (32111) %e A364675 (221111) %e A364675 (2111111) %e A364675 (11111111) %t A364675 submultQ[cap_,fat_] := And@@Function[i,Count[fat,i] >= Count[cap,i]] /@ Union[List@@cap]; %t A364675 Table[Length[Select[IntegerPartitions[n], submultQ[Differences[Union[#]],#]&]], {n,0,30}] %Y A364675 For subsets of {1..n} we appear to have A101925, A364671, A364672. %Y A364675 The strict case (no differences of 0) appears to be A154402. %Y A364675 Starting with the distinct parts gives A342337. %Y A364675 For disjoint multisets: A363260, subsets A364463, strict A364464. %Y A364675 For overlapping multisets: A364467, ranks A364537, strict A364536. %Y A364675 For subsets instead of submultisets we have A364673. %Y A364675 A000041 counts integer partitions, strict A000009. %Y A364675 A008284 counts partitions by length, strict A008289. %Y A364675 A236912 counts sum-free partitions, complement A237113. %Y A364675 A325325 counts partitions with distinct first differences. %Y A364675 Cf. A002865, A007862, A108917, A229816, A237667, A237668, A320347, A363225, A364272, A364345, A364466. %K A364675 nonn %O A364675 0,3 %A A364675 _Gus Wiseman_, Aug 04 2023