cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364697 Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit.

This page as a plain text file.
%I A364697 #15 Aug 05 2023 12:59:47
%S A364697 1,11,2,25,50,27,500,7,4,2500,3,71,250000,259,8,750000,10,39,5000000,
%T A364697 2598,7500000000,77,9,6,2500000000,5,53,533,75000000001,38,383,43,
%U A364697 75000000000000,35,84,13,103,12,5000000000000,28,67,30,48,25000000000000000,21,504,78,61,87
%N A364697 Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit.
%C A364697 If we want the sequence to be the lexicographically earliest permutation of the integers > 0, we must start with a(1) = 1 and a(2) = 11. With a(2) < 11, the sequence stops immediately.
%H A364697 Eric Angelini, <a href="http://cinquantesignes.blogspot.com/2023/08/cumulative-sums.html">Cumulative Sums</a>, Personal blog.
%e A364697 a(1) = 1
%e A364697 a(1) * a(2) = 11
%e A364697 a(1) * a(2) * a(3) = 22
%e A364697 a(1) * a(2) * a(3) * a(4) = 550
%e A364697 a(1) * a(2) * a(3) * a(4) * a(5) = 27500
%e A364697 a(1) * a(2) * a(3) * a(4) * a(5) * a(6) = 742500; etc.
%e A364697 The succession of the above results is:
%e A364697   1, 11, 22, 550, 27500, 742500, ...
%e A364697 The first terms of the sequence are:
%e A364697   1, 11, 2, 25, 50, 27, 500, 7, 4, 2500,, ...
%e A364697 We see that the successive digits are the same in the two sequences.
%t A364697 Nest[(a=#;AppendTo[a,(new=Flatten[IntegerDigits/@Table[Times@@a[[;;i]],{i,Length@a}]][[Length@Flatten[IntegerDigits/@a]+1;;]];
%t A364697 k=1;While[MemberQ[a,FromDigits@new[[;;k]]]||new[[k+1]]==0,k++];FromDigits@new[[;;k]])])&,{1,11,2,25},45] (* _Giorgos Kalogeropoulos_, Aug 05 2023 *)
%Y A364697 Cf. A309151, A364664.
%K A364697 base,nonn
%O A364697 1,2
%A A364697 _Eric Angelini_, Aug 03 2023