This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364697 #15 Aug 05 2023 12:59:47 %S A364697 1,11,2,25,50,27,500,7,4,2500,3,71,250000,259,8,750000,10,39,5000000, %T A364697 2598,7500000000,77,9,6,2500000000,5,53,533,75000000001,38,383,43, %U A364697 75000000000000,35,84,13,103,12,5000000000000,28,67,30,48,25000000000000000,21,504,78,61,87 %N A364697 Lexicographically earliest permutation of the positive integers such that the successive cumulative products reproduce the sequence itself, digit by digit. %C A364697 If we want the sequence to be the lexicographically earliest permutation of the integers > 0, we must start with a(1) = 1 and a(2) = 11. With a(2) < 11, the sequence stops immediately. %H A364697 Eric Angelini, <a href="http://cinquantesignes.blogspot.com/2023/08/cumulative-sums.html">Cumulative Sums</a>, Personal blog. %e A364697 a(1) = 1 %e A364697 a(1) * a(2) = 11 %e A364697 a(1) * a(2) * a(3) = 22 %e A364697 a(1) * a(2) * a(3) * a(4) = 550 %e A364697 a(1) * a(2) * a(3) * a(4) * a(5) = 27500 %e A364697 a(1) * a(2) * a(3) * a(4) * a(5) * a(6) = 742500; etc. %e A364697 The succession of the above results is: %e A364697 1, 11, 22, 550, 27500, 742500, ... %e A364697 The first terms of the sequence are: %e A364697 1, 11, 2, 25, 50, 27, 500, 7, 4, 2500,, ... %e A364697 We see that the successive digits are the same in the two sequences. %t A364697 Nest[(a=#;AppendTo[a,(new=Flatten[IntegerDigits/@Table[Times@@a[[;;i]],{i,Length@a}]][[Length@Flatten[IntegerDigits/@a]+1;;]]; %t A364697 k=1;While[MemberQ[a,FromDigits@new[[;;k]]]||new[[k+1]]==0,k++];FromDigits@new[[;;k]])])&,{1,11,2,25},45] (* _Giorgos Kalogeropoulos_, Aug 05 2023 *) %Y A364697 Cf. A309151, A364664. %K A364697 base,nonn %O A364697 1,2 %A A364697 _Eric Angelini_, Aug 03 2023