This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364712 #18 Apr 11 2024 10:27:32 %S A364712 13,10,36,25,80,37,100,56,109,71,176,85,158,105,200,102,226,102,241, %T A364712 178,253,150,312,176,269,149,336,224,395,192,309,216,381,207,592,230, %U A364712 336,239,497,312,481,266,405,348,526,270,549,317,497,277,570,354,532,334 %N A364712 Number of families of non-toric log del Pezzo surfaces of Picard number one with Gorenstein index = n that admit an effective action of a one-dimensional torus. %C A364712 This sequence appears in Proposition 7.1, p. 27 of Haettig, Hafner, Hausen and Springer. %H A364712 Justus Springer, <a href="/A364712/b364712.txt">Table of n, a(n) for n = 1..200</a> %H A364712 Daniel Haettig, Beatrice Hafner, Juergen Hausen and Justus Springer, <a href="https://arxiv.org/abs/2207.14790">Del Pezzo surfaces of Picard number one admitting a torus action</a>, arXiv:2207.14790 [math.AG], 2022. %H A364712 Daniel Hättig, Jürgen Hausen, Justus Springer and Hendrik Süß, <a href="https://www.math.uni-tuebingen.de/forschung/algebra/ldp-database/">Log del Pezzo surfaces with torus action - a searchable database</a> %Y A364712 Cf. A145582, A145581. %K A364712 nonn %O A364712 1,1 %A A364712 _Justus Springer_, Aug 04 2023