This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364724 #12 May 02 2024 14:29:33 %S A364724 0,0,1,4,6,2,12,4,7,6,20,22,3,13,4,16,17,12,12,46,14,5,54,52,60,20,32, %T A364724 33,22,70,6,26,8,45,4,16,34,34,52,12,10,7,49,116,114,61,124,126,68,46, %U A364724 140,20,24,10,77,22,81,54,52,174,180,60,182,13,38,48,32,66,101,204,206,15,70,28,220 %N A364724 a(n) is the least k such that 1^k + 2^k + 4^k is divisible by A364722(n). %C A364724 a(n) is the least k such that 1^k + 2^k + 4^k is divisible by the n-th number for which such k exists. %H A364724 Robert Israel, <a href="/A364724/b364724.txt">Table of n, a(n) for n = 1..10000</a> %e A364724 a(4) = 4 because A364722(4) = 13 and 1 + 2^4 + 4^4 = 273 = 21 * 13 is divisible by 13. %p A364724 f:= proc(n) local R,r,m,v; %p A364724 R:= map(t -> subs(t,x), [msolve(1+x+x^2, n)]); %p A364724 m:= infinity; %p A364724 for r in R do %p A364724 try %p A364724 v:= NumberTheory:-ModularLog(r,2,n); %p A364724 catch "no solutions exist": next %p A364724 end try; %p A364724 m:= min(m,v) %p A364724 od; %p A364724 subs(infinity=NULL,m); %p A364724 end proc: %p A364724 map(f, [seq(i,i=1..1000,2)]); %o A364724 (Python) %o A364724 from itertools import count, islice %o A364724 from sympy import sqrt_mod_iter, discrete_log %o A364724 def A364724_gen(): # generator of terms %o A364724 yield 0 %o A364724 for k in count(2): %o A364724 m = None %o A364724 for d in sqrt_mod_iter(-3,k): %o A364724 r = d>>1 if d&1 else d+k>>1 %o A364724 try: %o A364724 m = discrete_log(k,r,2) if m is None else min(m,discrete_log(k,r,2)) %o A364724 except: %o A364724 continue %o A364724 if m is not None: yield m %o A364724 A364724_list = list(islice(A364724_gen(),30)) %Y A364724 Cf. A001576, A364722. %K A364724 nonn,look %O A364724 1,4 %A A364724 _Robert Israel_, Aug 04 2023