This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364726 #10 Apr 27 2025 03:23:26 %S A364726 12,24,84,120,672,24384,43065,78975,81081,261261,523776,9124731, %T A364726 13398021,69087249,91963648,459818240,39142675143,51001180160 %N A364726 Admirable numbers with more divisors than any smaller admirable number. %C A364726 The corresponding numbers of divisors are 6, 8, 12, 16, 24, 28, 32, 36, 40, 48, 80, 90, 96, 120, 144, 288, 360, 480, ... . %C A364726 If there are infinitely many even perfect numbers (A000396), then this sequence is infinite, because if p is a Mersenne prime exponent (A000043) and q is an odd prime that does not divide 2^p-1, then 2^(p-1)*(2^p-1)*q is an admirable number with 4*p divisors (see A165772). %C A364726 a(19) > 10^11. %t A364726 admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2]; %t A364726 seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6] %o A364726 (PARI) isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;} %o A364726 lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));} %Y A364726 Cf. A000005, A000043, A000396, A109745, A111592, A165772. %Y A364726 Similar sequences: A002182, A136404, A335008, A335317, A348198, A359963, A359964. %K A364726 nonn,more %O A364726 1,1 %A A364726 _Amiram Eldar_, Aug 05 2023