cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364726 Admirable numbers with more divisors than any smaller admirable number.

This page as a plain text file.
%I A364726 #10 Apr 27 2025 03:23:26
%S A364726 12,24,84,120,672,24384,43065,78975,81081,261261,523776,9124731,
%T A364726 13398021,69087249,91963648,459818240,39142675143,51001180160
%N A364726 Admirable numbers with more divisors than any smaller admirable number.
%C A364726 The corresponding numbers of divisors are 6, 8, 12, 16, 24, 28, 32, 36, 40, 48, 80, 90, 96, 120, 144, 288, 360, 480, ... .
%C A364726 If there are infinitely many even perfect numbers (A000396), then this sequence is infinite, because if p is a Mersenne prime exponent (A000043) and q is an odd prime that does not divide 2^p-1, then 2^(p-1)*(2^p-1)*q is an admirable number with 4*p divisors (see A165772).
%C A364726 a(19) > 10^11.
%t A364726 admQ[n_] := (ab = DivisorSigma[1, n] - 2 n) > 0 && EvenQ[ab] && ab/2 < n && Divisible[n, ab/2];
%t A364726 seq[kmax_] := Module[{s = {}, dm = 0, d1}, Do[d1 = DivisorSigma[0, k]; If[d1 > dm && admQ[k], dm = d1; AppendTo[s, k]], {k, 1, kmax}]; s]; seq[10^6]
%o A364726 (PARI) isadm(n) = {my(ab=sigma(n)-2*n); ab>0 && ab%2 == 0 && ab/2 < n && n%(ab/2) == 0;}
%o A364726 lista(kmax) = {my(dm = 0, d1); for(k = 1, kmax, d1 = numdiv(k); if(d1 > dm && isadm(k), dm = d1; print1(k,", ")));}
%Y A364726 Cf. A000005, A000043, A000396, A109745, A111592, A165772.
%Y A364726 Similar sequences: A002182, A136404, A335008, A335317, A348198, A359963, A359964.
%K A364726 nonn,more
%O A364726 1,1
%A A364726 _Amiram Eldar_, Aug 05 2023