cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364752 Number of subsets of {1..n} containing n and all first differences.

This page as a plain text file.
%I A364752 #11 Aug 06 2023 17:50:09
%S A364752 1,1,2,2,4,4,9,11,24,38,75,131,263,476,928,1750,3386,6439,12455,23853,
%T A364752 46097,88709,171471,330939,640472,1238755,2400154,4650857,9022792,
%U A364752 17510820,34015138,66106492,128571563,250191929,487175381,949133736,1850223956,3608650389
%N A364752 Number of subsets of {1..n} containing n and all first differences.
%H A364752 Rémy Sigrist, <a href="/A364752/a364752.txt">C++ program</a>
%e A364752 The a(1) = 1 through a(6) = 9 subsets:
%e A364752   {1}  {2}    {3}      {4}        {5}          {6}
%e A364752        {1,2}  {1,2,3}  {2,4}      {1,2,3,5}    {3,6}
%e A364752                        {1,2,4}    {1,2,4,5}    {2,4,6}
%e A364752                        {1,2,3,4}  {1,2,3,4,5}  {1,2,3,6}
%e A364752                                                {1,2,4,6}
%e A364752                                                {1,2,3,4,6}
%e A364752                                                {1,2,3,5,6}
%e A364752                                                {1,2,4,5,6}
%e A364752                                                {1,2,3,4,5,6}
%t A364752 Table[If[n==0,1,Length[Select[Subsets[Range[n]], MemberQ[#,n]&&SubsetQ[#,Differences[#]]&]]],{n,0,10}]
%Y A364752 Partial sums are A364671, complement A364672.
%Y A364752 The complement is counted by A364753.
%Y A364752 A054519 counts subsets containing differences, A326083 containing sums.
%Y A364752 A364463 counts subsets disjoint from differences, complement A364466.
%Y A364752 A364673 counts partitions containing differences, A364674, A364675.
%Y A364752 Cf. A151897, A196723, A237668, A325325, A363225, A364345, A364464, A364537.
%K A364752 nonn
%O A364752 0,3
%A A364752 _Gus Wiseman_, Aug 06 2023
%E A364752 More terms from _Rémy Sigrist_, Aug 06 2023