cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364753 Number of subsets of {1..n} containing n but not containing all first differences.

Original entry on oeis.org

0, 0, 0, 2, 4, 12, 23, 53, 104, 218, 437, 893, 1785, 3620, 7264, 14634, 29382, 59097, 118617, 238291, 478191, 959867, 1925681, 3863365, 7748136, 15538461, 31154278, 62458007, 125194936, 250924636, 502855774, 1007635332, 2018912085, 4044775367, 8102759211, 16230735448, 32509514412, 65110826347
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2023

Keywords

Comments

In other words, subsets containing both n and some element that is not the difference of two consecutive elements.

Examples

			The a(1) = 0 through a(6) = 23 subsets:
  .  .  {1,3}  {1,4}    {1,5}      {1,6}
        {2,3}  {3,4}    {2,5}      {2,6}
               {1,3,4}  {3,5}      {4,6}
               {2,3,4}  {4,5}      {5,6}
                        {1,2,5}    {1,2,6}
                        {1,3,5}    {1,3,6}
                        {1,4,5}    {1,4,6}
                        {2,3,5}    {1,5,6}
                        {2,4,5}    {2,3,6}
                        {3,4,5}    {2,5,6}
                        {1,3,4,5}  {3,4,6}
                        {2,3,4,5}  {3,5,6}
                                   {4,5,6}
                                   {1,2,5,6}
                                   {1,3,4,6}
                                   {1,3,5,6}
                                   {1,4,5,6}
                                   {2,3,4,6}
                                   {2,3,5,6}
                                   {2,4,5,6}
                                   {3,4,5,6}
                                   {1,3,4,5,6}
                                   {2,3,4,5,6}
		

Crossrefs

Partial sums are A364672, complement A364671.
The complement is counted by A364752.
A054519 counts subsets containing differences, A326083 containing sums.
A364463 counts subsets disjoint from differences, complement A364466.
A364673, A364674, A364675 count partitions containing differences.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!SubsetQ[#,Differences[#]]&]],{n,0,10}]

Extensions

More terms from Giorgos Kalogeropoulos, Aug 07 2023