cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364754 Smallest nonnegative integer not expressible by the addition and subtraction of fewer than n Lucas numbers.

This page as a plain text file.
%I A364754 #22 Dec 31 2023 00:47:09
%S A364754 0,1,5,23,99,421,1785,7563,32039,135721,574925,2435423,10316619,
%T A364754 43701901,185124225,784198803,3321919439,14071876561,59609425685,
%U A364754 252509579303,1069647742899,4531100550901,19194049946505,81307300336923,344423251294199,1459000305513721,6180424473349085
%N A364754 Smallest nonnegative integer not expressible by the addition and subtraction of fewer than n Lucas numbers.
%H A364754 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,-1).
%F A364754 a(0) = 0.
%F A364754 a(n) = (A000032(3*n-1)-1)/2, for n > 0.
%F A364754 a(n) = 1 + Sum_{i=1..n-1} A000032(3*i), for n > 0.
%F A364754 G.f.: x*(1 + x^2)/((1 - x)*(1 - 4*x - x^2)). -  _Stefano Spezia_, Oct 21 2023
%e A364754 a(0) = 0, since 0 is expressible as the sum of 0 Lucas numbers.
%e A364754 a(1) = 1, since 1 is a Lucas number.
%e A364754 a(2) = 5, since 2, 3, and 4 are all Lucas numbers; while 5=1+4, the sum of 2 Lucas numbers.
%e A364754 a(3) = 23, since integers less than 23 are expressible with 2 or fewer Lucas numbers, while 23 = 1+4+18 requires 3 terms.
%t A364754 a[n_] := (LucasL[3*n - 1] - 1)/2; a[0] = 0; Array[a, 27, 0] (* _Amiram Eldar_, Oct 21 2023 *)
%o A364754 (Python)
%o A364754 from sympy import lucas
%o A364754 a = lambda n: n and (lucas(3*n-1)-1)//2
%Y A364754 Cf. A000032, A004146 (adding positive Lucas numbers), A365907 (adding any Lucas numbers).
%Y A364754 Cf. A001076 (with Fibonacci numbers).
%K A364754 nonn,easy
%O A364754 0,3
%A A364754 _Mike Speciner_, Oct 20 2023