This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364756 #10 Jan 13 2024 16:46:38 %S A364756 0,0,0,1,2,7,17,40,87,196,413,875,1812,3741,7640,15567,31493,63666, %T A364756 128284,257977,518045,1039478,2083719,4174586,8359837,16735079, %U A364756 33493780,67020261,134090173,268250256,536609131,1073358893,2146942626,4294183434,8588837984,17178273355 %N A364756 Number of subsets of {1..n} containing n and some element equal to the sum of two distinct others. %H A364756 Andrew Howroyd, <a href="/A364756/b364756.txt">Table of n, a(n) for n = 0..75</a> %F A364756 First differences of A088809. %e A364756 The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is not counted under a(8). %e A364756 The subset {2,3,4,6} has pair-sum 2 + 4 = 6, so is counted under a(6). %e A364756 The a(0) = 0 through a(6) = 17 subsets: %e A364756 . . . {1,2,3} {1,3,4} {1,4,5} {1,5,6} %e A364756 {1,2,3,4} {2,3,5} {2,4,6} %e A364756 {1,2,3,5} {1,2,3,6} %e A364756 {1,2,4,5} {1,2,4,6} %e A364756 {1,3,4,5} {1,2,5,6} %e A364756 {2,3,4,5} {1,3,4,6} %e A364756 {1,2,3,4,5} {1,3,5,6} %e A364756 {1,4,5,6} %e A364756 {2,3,4,6} %e A364756 {2,3,5,6} %e A364756 {2,4,5,6} %e A364756 {1,2,3,4,6} %e A364756 {1,2,3,5,6} %e A364756 {1,2,4,5,6} %e A364756 {1,3,4,5,6} %e A364756 {2,3,4,5,6} %e A364756 {1,2,3,4,5,6} %t A364756 Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]!={}&]],{n,0,10}] %Y A364756 Partial sums are A088809, non-binary A364534. %Y A364756 With re-usable parts we have differences of A093971, complement A288728. %Y A364756 The complement with n is counted by A364755, partial sums A085489(n) - 1. %Y A364756 Cf. A000079, A007865, A050291, A051026, A103580, A151897, A236912, A326080, A326083, A364272. %K A364756 nonn %O A364756 0,5 %A A364756 _Gus Wiseman_, Aug 11 2023 %E A364756 a(16) onwards added (using A088809) by _Andrew Howroyd_, Jan 13 2024