A364773 a(n) is the periodic part on the n-th diagonal from the right of rule-30 1-D cellular automaton, when started from a single ON cell.
1, 10, 10, 1100, 10110100, 10101000, 1010011101011000, 11001010101011110011010101010000, 10111010011010101101010101010000, 1010110010110101010110011001111101010011010010101010011001100000, 1010101110101100101010010110101011010010101101010110010110100000
Offset: 1
Keywords
Examples
In the following diagram, showing the first 20 evolution steps of the CA, two diagonals are highlighted (the rest of the CA is represented by hyphens, for better visualization). . 2nd diagonal a(2) = 10 __ \- 7th diagonal __ -1- a(7) = 1010011101011000 \ ---0- 1----1- --0----0- ----1----1- ------0----0- --------0----1- ----------1----0- ------------1----1- --------------1----0- ----------------0----1- ------------------1----0- --------------------0----1- ----------------------1----0- ------------------------1----1- --------------------------0----0- ----------------------------0----1- ------------------------------0----0- --------------------------------1----1- ----------------------------------0----0- .
Links
- Paolo Xausa, Table of n, a(n) for n = 1..25
- Michael Brunnbauer, Diagonals in elementary cellular automaton 30, 2019 (local PDF copy, with author's permission).
- Eric S. Rowland, Local Nested Structure in Rule 30, Complex Systems 16 (2006), pp. 239-258.
- Eric Weisstein's World of Mathematics, Rule 30.
- Stephen Wolfram, Notes on chapter 2, Rule 30, from A new kind of science online, Wolfram Media, 2002.
- Index entries for sequences related to cellular automata
Programs
-
Mathematica
A364773list[steps_]:=Module[{d=2Ceiling[Log2[steps]],ca,n=1,p,plen,a={1}},ca=CellularAutomaton[30,{{1},0},{steps,{1-d,steps}}];While[++n<=2(d-1)&&(plen=Length[p=FindRepeat[Flatten[Rest[Split[Diagonal[ca,d-n]]]]]])>=IntegerLength[Last[a]]&&IntegerQ[Log2[plen]],AppendTo[a,FromDigits[p]]];a]; A364773list[80] (* Analyzes 80 evolution steps *)
Comments