This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364783 #12 Aug 08 2023 03:22:29 %S A364783 1,1451520,9170703360,3044058071040,457002000000000,13311459341107200, %T A364783 546914437209907200,6383852471797678080,95928796265538862080, %U A364783 663347543040000000000,7338585441586912128000,27916153580121646694400,245593958671812227742720,793857243898924498944000 %N A364783 Order of the symplectic group of 6 X 6 matrices over Z_n. %C A364783 Let M be any fixed nonsingular skew-symmetric 6 X 6 matrix over the integers mod n. Then a(n) is the number of invertible 6 X 6 matrices A over the integers mod n such that A^T * M * A = M, where A^T denotes the transpose of A. %H A364783 E. Artin, <a href="https://doi.org/10.1002/9781118164518">Geometric Algebra</a>, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1988. Reprint of the 1957 original, A Wiley-Interscience Publication. %H A364783 Larry C. Grove, <a href="https://doi.org/10.1090/gsm/039">Classical Groups and Geometric Algebra</a>, Grad. Stud. Math., 39 American Mathematical Society, Providence, RI, 2002. x+169 pp. %F A364783 a(n) = Product_{primes p dividing n} p^(21*v_p(n) - 12)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1), where v_p(n) is the largest power k such that p^k divides n. %F A364783 For primes p : a(p) = A003932(n), where A246655(n) = p. %F A364783 Sum_{k=1..n} a(k) ~ c * n^22 / 22, where c = Product_{p prime} (1 - 1/p^3 - 1/p^5 + 1/p^9 + 1/p^11 - 1/p^13) = 0.8006965549... . - _Amiram Eldar_, Aug 08 2023 %t A364783 f[p_, e_] := p^(21*e - 12)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 15] (* _Amiram Eldar_, Aug 08 2023 *) %o A364783 (Sage) %o A364783 def a(n): %o A364783 return product([p^(21*n.valuation(p) - 12)*(p^2 - 1)*(p^4 - 1)*(p^6 - 1) %o A364783 for p in n.prime_factors()]) %Y A364783 Cf. A364771, A364782. %K A364783 nonn,mult %O A364783 1,2 %A A364783 _Robin Visser_, Aug 07 2023