cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364786 We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.

This page as a plain text file.
%I A364786 #40 Sep 15 2023 04:14:29
%S A364786 19,7,112,11123,1111222,111111245666689,1111133333333335,
%T A364786 1111122333333333333333333346677777777888,
%U A364786 22222222222222222226666668888888,233444445555555555555555555555555555555555555555555577,1222222222233333333333333444444444455555555555555556666666666666666666666677778888889
%N A364786 We exclude powers of 10 and numbers of the form 11...111 in which the number of 1's is a power of 10. Then a(n) is the smallest number (not excluded) whose trajectory under iteration of "x -> sum of n-th powers of digits of x" reaches 1.
%C A364786 For n!=2, it appears that the first step in the trajectory is always to a power of 10, so that the task would be to find the shortest and lexicographically smallest partition of a power of 10 into parts 1^n,...,9^n.
%e A364786 a(1) = 19 since 1^1 + 9^1 = 10 and 1^1 + 0^1 = 1.
%e A364786 a(3) = 112 since 1^3 + 1^3 + 2^3 = 10 and 1^3 + 0^3 = 1.
%Y A364786 Cf. A007770, A035497, A046519.
%K A364786 nonn,base
%O A364786 1,1
%A A364786 _Simon R Blow_, Aug 07 2023
%E A364786 a(6), a(8), and a(9) corrected by, and a(10) and a(11) from _Jon E. Schoenfield_, Aug 10 2023
%E A364786 Definition clarified by _N. J. A. Sloane_, Sep 15 2023