This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364789 #58 Jan 31 2024 03:59:07 %S A364789 1,1,1,1,4,2,1,2,6,1,1,1,2,1,4,4,1,3,5,4,2,1,5,2,1,5,3,2,3,7,2,1,1,4, %T A364789 2,3,9,7,1,1,1,1,2,1,5,5,2,4,3,1,2,2,1,3,4,3,2,6,1,2,2,1,8,3,1,3,8,1, %U A364789 3,5,9,1,2,4,8,1,3,1,3,1,5,3,3,3,5,1,3 %N A364789 Initial digit of (n^n)^n (A002489(n)). %C A364789 a(0) = 1 is from (0^0)^0 = 1 per A002489. %C A364789 The author conjectures that this sequence obeys the well-known Benford's law. %H A364789 Paolo Xausa, <a href="/A364789/b364789.txt">Table of n, a(n) for n = 0..1000</a> %H A364789 Pointless Large numbers stuff by Cookiefonster, <a href="https://sites.google.com/site/pointlesslargenumberstuff/home/2/weakoperators">2.03 The Weak Hyper-Operators</a>. %H A364789 Wikipedia, <a href="https://en.wikipedia.org/wiki/Benford%27s_law">Benford's law</a>. %F A364789 a(n) = floor(((n^n)^n)/10^floor(log_10((n^n)^n))). %F A364789 a(n) = A000030(A002489(n)). %e A364789 a(4) = 4, since (4^4)^4 = 4^(4^2) = 4294967296. %t A364789 A364789[n_] := If[n == 0, 1, First[IntegerDigits[(n^n)^n]]]; %t A364789 Array[A364789, 100, 0] (* _Paolo Xausa_, Jan 31 2024 *) %o A364789 (Python) %o A364789 def A364789(n): return int(str((n**n)**n)[0]) # _Chai Wah Wu_, Aug 10 2023 %Y A364789 Cf. A000030, A002489, A241299, A363746, A364837, A364855. %Y A364789 Cf. A229522 (final digit). %K A364789 base,easy,nonn %O A364789 0,5 %A A364789 _Marco RipĂ _, Aug 08 2023