cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364831 Primes whose digits are prime and in nonincreasing order.

This page as a plain text file.
%I A364831 #18 Sep 11 2023 11:40:32
%S A364831 2,3,5,7,53,73,733,773,5333,7333,7753,55333,75533,75553,77773,733333,
%T A364831 755333,775553,7553333,7555333,7775533,7777753,55555333,55555553,
%U A364831 77755553,555553333,755555533,773333333,777555553,777773333,777775333,777775553,777777773
%N A364831 Primes whose digits are prime and in nonincreasing order.
%C A364831 Intersection of A028867 and A019546.
%C A364831 The subsequence for primes whose digits are prime and in strictly decreasing order has just six terms: 2 3 5 7 53 73 (see A177061).
%H A364831 Chai Wah Wu, <a href="/A364831/b364831.txt">Table of n, a(n) for n = 1..10000</a>
%t A364831 Select[Prime[Range[3100000]], AllTrue[d = IntegerDigits[#], PrimeQ] && GreaterEqual @@ d &]
%o A364831 (Python)
%o A364831 from itertools import count, islice, chain, combinations_with_replacement
%o A364831 from sympy import isprime
%o A364831 def A364831_gen(): # generator of terms
%o A364831     yield 2
%o A364831     yield from chain.from_iterable((sorted(s for d in combinations_with_replacement('753',l) if isprime(s:=int(''.join(d)))) for l in count(1)))
%o A364831 A364831_list = list(islice(A364831_gen(),30)) # _Chai Wah Wu_, Sep 10 2023
%Y A364831 Cf. A009996, A019546, A177061, A028867.
%K A364831 nonn,base
%O A364831 1,1
%A A364831 _James C. McMahon_, Aug 09 2023