This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364831 #18 Sep 11 2023 11:40:32 %S A364831 2,3,5,7,53,73,733,773,5333,7333,7753,55333,75533,75553,77773,733333, %T A364831 755333,775553,7553333,7555333,7775533,7777753,55555333,55555553, %U A364831 77755553,555553333,755555533,773333333,777555553,777773333,777775333,777775553,777777773 %N A364831 Primes whose digits are prime and in nonincreasing order. %C A364831 Intersection of A028867 and A019546. %C A364831 The subsequence for primes whose digits are prime and in strictly decreasing order has just six terms: 2 3 5 7 53 73 (see A177061). %H A364831 Chai Wah Wu, <a href="/A364831/b364831.txt">Table of n, a(n) for n = 1..10000</a> %t A364831 Select[Prime[Range[3100000]], AllTrue[d = IntegerDigits[#], PrimeQ] && GreaterEqual @@ d &] %o A364831 (Python) %o A364831 from itertools import count, islice, chain, combinations_with_replacement %o A364831 from sympy import isprime %o A364831 def A364831_gen(): # generator of terms %o A364831 yield 2 %o A364831 yield from chain.from_iterable((sorted(s for d in combinations_with_replacement('753',l) if isprime(s:=int(''.join(d)))) for l in count(1))) %o A364831 A364831_list = list(islice(A364831_gen(),30)) # _Chai Wah Wu_, Sep 10 2023 %Y A364831 Cf. A009996, A019546, A177061, A028867. %K A364831 nonn,base %O A364831 1,1 %A A364831 _James C. McMahon_, Aug 09 2023