This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364832 #15 Sep 17 2023 11:01:58 %S A364832 1,3,2,7,6,4,9,14,12,5,13,18,28,15,8,19,26,36,35,24,10,21,38,52,45,56, %T A364832 30,11,27,42,76,65,72,70,33,16,31,54,84,95,104,90,77,48,17,37,62,108, %U A364832 105,152,130,99,112,51,20,39,74,124,135,168,190,143,144,119 %N A364832 Rectangular array, read by descending antidiagonals, in which row n lists numbers m such that w(s,m) = n-1 (see comments for definition of w). %C A364832 Let s be a set of primes. For each positive integer m, let w(s,m) = number of primes in s, not necessarily distinct, in the prime factorization of m. For the present sequence, we take s = A003627 = primes of the form 3k-1. Every positive integer occurs exactly once. %F A364832 (row n) = A004612(n)*(row 1). %e A364832 Corner: %e A364832 1 3 7 9 13 19 21 27 31 %e A364832 2 6 14 18 26 38 42 54 62 %e A364832 4 12 28 36 52 76 84 108 124 %e A364832 5 15 35 45 65 95 105 135 155 %e A364832 8 24 56 72 104 152 168 216 248 %e A364832 10 30 70 90 130 190 210 270 310 %e A364832 11 33 77 99 143 209 231 297 341 %e A364832 16 48 112 144 208 304 336 432 496 %t A364832 s = Select[Prime[Range[500]], Mod[#, 3] == 2 &]; (* A003627 *) %t A364832 g[m_] := Select[FactorInteger[m], MemberQ[s, #[[1]]] &]; %t A364832 h := Times @@ (#[[1]]^#[[2]]) &[Transpose[#]] & ; %t A364832 w[m_] := If[g[m] == {}, 1, h[g[m]]]; %t A364832 t = Table[w[m], {m, 1, 500}] ; (* A343430 *) %t A364832 a[n_] := Flatten[Position[t, n]]; %t A364832 t1 = Select[Table[a[n], {n, 1, 30}], # != {} &]; %t A364832 TableForm[t1] (* this sequence as array *) %t A364832 Table[t1[[n - k + 1, k]], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *) %Y A364832 Cf. A000040, A003627, A004612 (column 1), A343430, A364808, A346414 (row 1). %K A364832 nonn,tabl %O A364832 1,2 %A A364832 _Clark Kimberling_, Aug 09 2023