cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364832 Rectangular array, read by descending antidiagonals, in which row n lists numbers m such that w(s,m) = n-1 (see comments for definition of w).

This page as a plain text file.
%I A364832 #15 Sep 17 2023 11:01:58
%S A364832 1,3,2,7,6,4,9,14,12,5,13,18,28,15,8,19,26,36,35,24,10,21,38,52,45,56,
%T A364832 30,11,27,42,76,65,72,70,33,16,31,54,84,95,104,90,77,48,17,37,62,108,
%U A364832 105,152,130,99,112,51,20,39,74,124,135,168,190,143,144,119
%N A364832 Rectangular array, read by descending antidiagonals, in which row n lists numbers m such that w(s,m) = n-1 (see comments for definition of w).
%C A364832 Let s be a set of primes. For each positive integer m, let w(s,m) = number of primes in s, not necessarily distinct, in the prime factorization of m. For the present sequence, we take s = A003627 = primes of the form 3k-1. Every positive integer occurs exactly once.
%F A364832 (row n) = A004612(n)*(row 1).
%e A364832 Corner:
%e A364832    1    3    7    9   13   19   21   27   31
%e A364832    2    6   14   18   26   38   42   54   62
%e A364832    4   12   28   36   52   76   84  108  124
%e A364832    5   15   35   45   65   95  105  135  155
%e A364832    8   24   56   72  104  152  168  216  248
%e A364832   10   30   70   90  130  190  210  270  310
%e A364832   11   33   77   99  143  209  231  297  341
%e A364832   16   48  112  144  208  304  336  432  496
%t A364832 s = Select[Prime[Range[500]], Mod[#, 3] == 2 &]; (* A003627 *)
%t A364832 g[m_] := Select[FactorInteger[m], MemberQ[s, #[[1]]] &];
%t A364832 h := Times @@ (#[[1]]^#[[2]]) &[Transpose[#]] & ;
%t A364832 w[m_] := If[g[m] == {}, 1, h[g[m]]];
%t A364832 t = Table[w[m], {m, 1, 500}] ; (* A343430 *)
%t A364832 a[n_] := Flatten[Position[t, n]];
%t A364832 t1 = Select[Table[a[n], {n, 1, 30}], # != {} &];
%t A364832 TableForm[t1]  (* this sequence as array *)
%t A364832 Table[t1[[n - k + 1, k]], {n, 12}, {k, n, 1, -1}] // Flatten  (* this sequence *)
%Y A364832 Cf. A000040, A003627, A004612 (column 1), A343430, A364808, A346414 (row 1).
%K A364832 nonn,tabl
%O A364832 1,2
%A A364832 _Clark Kimberling_, Aug 09 2023