This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364839 #14 Oct 24 2023 10:46:11 %S A364839 0,0,0,1,1,1,3,2,4,5,7,7,12,12,17,20,26,29,39,43,54,62,77,88,107,122, %T A364839 148,168,200,229,267,308,360,407,476,536,623,710,812,917,1050,1190, %U A364839 1349,1530,1733,1944,2206,2483,2794,3138,3524 %N A364839 Number of strict integer partitions of n such that some part can be written as a nonnegative linear combination of the others. %e A364839 For y = (4,3,2) we can write 4 = 0*3 + 2*2, so y is counted under a(9). %e A364839 For y = (11,5,3) we can write 11 = 1*5 + 2*3, so y is counted under a(19). %e A364839 For y = (17,5,4,3) we can write 17 = 1*3 + 1*4 + 2*5, so y is counted under a(29). %e A364839 The a(1) = 0 through a(12) = 12 strict partitions (A = 10, B = 11): %e A364839 . . (21) (31) (41) (42) (61) (62) (63) (82) (A1) (84) %e A364839 (51) (421) (71) (81) (91) (542) (93) %e A364839 (321) (431) (432) (532) (632) (A2) %e A364839 (521) (531) (541) (641) (B1) %e A364839 (621) (631) (731) (642) %e A364839 (721) (821) (651) %e A364839 (4321) (5321) (732) %e A364839 (741) %e A364839 (831) %e A364839 (921) %e A364839 (5421) %e A364839 (6321) %t A364839 combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]]; %t A364839 Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[combs[#[[k]], Delete[#,k]]!={}, {k,Length[#]}]&]],{n,0,15}] %o A364839 (Python) %o A364839 from sympy.utilities.iterables import partitions %o A364839 def A364839(n): %o A364839 if n <= 1: return 0 %o A364839 alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0 %o A364839 for p in partitions(n,k=n-1): %o A364839 if max(p.values(),default=0)==1: %o A364839 s = set(p) %o A364839 if any(set(t).issubset(s-{q}) for q in s for t in alist[q]): %o A364839 c += 1 %o A364839 return c # _Chai Wah Wu_, Sep 23 2023 %Y A364839 For sums instead of combinations we have A364272, binary A364670. %Y A364839 The complement in strict partitions is A364350. %Y A364839 Non-strict versions are A364913 and the complement of A364915. %Y A364839 For subsets instead of partitions we have A364914, complement A326083. %Y A364839 The case of no all positive coefficients is A365006. %Y A364839 A000041 counts integer partitions, strict A000009. %Y A364839 A008284 counts partitions by length, strict A008289. %Y A364839 A116861 and A364916 count linear combinations of strict partitions. %Y A364839 Cf. A085489, A151897, A236912, A237113, A237667, A275972, A363226, A365002. %K A364839 nonn %O A364839 0,7 %A A364839 _Gus Wiseman_, Aug 19 2023