This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364843 #36 Sep 15 2023 16:30:23 %S A364843 1,2,2,4,4,4,7,7,7,7,11,11,11,11,11,16,16,16,16,16,16,22,22,22,22,22, %T A364843 22,22,29,29,29,29,29,29,29,29,37,37,37,37,37,37,37,37,37,46,46,46,46, %U A364843 46,46,46,46,46,46,56,56,56,56,56,56,56,56,56,56,56 %N A364843 Integers are repeated in runs of 1, 2, 3, ... Each new integer (following a run) is given the value of its sequence index value. %C A364843 Omitting repeats yields the triangular numbers plus 1 sequence A000124. %F A364843 G.f.: x*y*(1 + 2*x^4*y^2 - x*(1 + y) - 2*x^3*y*(1 + y) + x^2*(1 + y + y^2))/((1 - x)^3*(1 - x*y)^3). - _Stefano Spezia_, Sep 02 2023 %F A364843 Sum_{k=1..n} k = T(n,k) = A006528(n). - _Alois P. Heinz_, Sep 15 2023 %e A364843 Illustrated as a triangle begins: %e A364843 1; %e A364843 2, 2; %e A364843 4, 4, 4; %e A364843 7, 7, 7, 7; %e A364843 11, 11, 11, 11, 11; %e A364843 16, 16, 16, 16, 16, 16; %e A364843 22, 22, 22, 22, 22, 22, 22; %e A364843 ... %p A364843 T:= (n, k)-> n*(n-1)/2+1: %p A364843 seq(seq(T(n,k), k=1..n), n=1..11); # _Alois P. Heinz_, Aug 31 2023 %o A364843 (PARI) a(n) = my(t=(sqrtint(8*n-1)-1)\2); t*(t+1)/2+1 \\ _Thomas Scheuerle_, Aug 10 2023 %o A364843 (Python) %o A364843 from math import isqrt %o A364843 def A364843(n): return ((t:=isqrt((n<<3)-1)-1>>1)*(t+1)>>1)+1 # _Chai Wah Wu_, Sep 15 2023 %Y A364843 Cf. A000124, A002024, A006528. %Y A364843 Row sums give A006000(n-1). %K A364843 easy,nonn,tabl %O A364843 1,2 %A A364843 _Peter Woodward_, Aug 10 2023