cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364843 Integers are repeated in runs of 1, 2, 3, ... Each new integer (following a run) is given the value of its sequence index value.

This page as a plain text file.
%I A364843 #36 Sep 15 2023 16:30:23
%S A364843 1,2,2,4,4,4,7,7,7,7,11,11,11,11,11,16,16,16,16,16,16,22,22,22,22,22,
%T A364843 22,22,29,29,29,29,29,29,29,29,37,37,37,37,37,37,37,37,37,46,46,46,46,
%U A364843 46,46,46,46,46,46,56,56,56,56,56,56,56,56,56,56,56
%N A364843 Integers are repeated in runs of 1, 2, 3, ... Each new integer (following a run) is given the value of its sequence index value.
%C A364843 Omitting repeats yields the triangular numbers plus 1 sequence A000124.
%F A364843 G.f.: x*y*(1 + 2*x^4*y^2 - x*(1 + y) - 2*x^3*y*(1 + y) + x^2*(1 + y + y^2))/((1 - x)^3*(1 - x*y)^3). - _Stefano Spezia_, Sep 02 2023
%F A364843 Sum_{k=1..n} k = T(n,k) = A006528(n). - _Alois P. Heinz_, Sep 15 2023
%e A364843 Illustrated as a triangle begins:
%e A364843    1;
%e A364843    2,  2;
%e A364843    4,  4,  4;
%e A364843    7,  7,  7,  7;
%e A364843   11, 11, 11, 11, 11;
%e A364843   16, 16, 16, 16, 16, 16;
%e A364843   22, 22, 22, 22, 22, 22, 22;
%e A364843   ...
%p A364843 T:= (n, k)-> n*(n-1)/2+1:
%p A364843 seq(seq(T(n,k), k=1..n), n=1..11);  # _Alois P. Heinz_, Aug 31 2023
%o A364843 (PARI) a(n) = my(t=(sqrtint(8*n-1)-1)\2); t*(t+1)/2+1 \\ _Thomas Scheuerle_, Aug 10 2023
%o A364843 (Python)
%o A364843 from math import isqrt
%o A364843 def A364843(n): return ((t:=isqrt((n<<3)-1)-1>>1)*(t+1)>>1)+1 # _Chai Wah Wu_, Sep 15 2023
%Y A364843 Cf. A000124, A002024, A006528.
%Y A364843 Row sums give A006000(n-1).
%K A364843 easy,nonn,tabl
%O A364843 1,2
%A A364843 _Peter Woodward_, Aug 10 2023