This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364845 #10 Aug 12 2023 00:54:43 %S A364845 1,7,151,494,11511,93039,2332332,9966699 %N A364845 a(n) is the denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-Pi) is minimal, with the numerator h of n digits. %C A364845 a(2) = 7 corresponds to the denominator of A068028. %H A364845 <a href="/index/Ph#Pi314">Index entries for sequences related to the number Pi</a> %e A364845 n fraction approximated value %e A364845 - ------------------- ------------------ %e A364845 1 3 3 %e A364845 2 22/7 3.1428571428571... %e A364845 3 474/151 3.1390728476821... %e A364845 4 1551/494 3.1396761133603... %e A364845 5 36163/11511 3.1416036834332... %e A364845 6 292292/93039 3.1416072829673... %e A364845 7 7327237/2332332 3.1415926206046... %e A364845 8 31311313/9966699 3.1415931192464... %e A364845 ... %t A364845 nmax = 8; a = {1}; hmin = kmin = 0; For[n = 2, n <= nmax, n++, minim = Infinity; h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; k = Select[Range[10^(n - 2), 10^n - 1], PalindromeQ]; lh = Length[h]; lk = Length[k]; For[i = 1, i <= lh, i++, For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - Pi]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; kmin = Part[k, j]]]]; AppendTo[a, kmin]]; a %Y A364845 Cf. A000796, A002113, A068028, A070252, A364844 (numerator), A364846. %Y A364845 Cf. A355622, A355623. %K A364845 nonn,base,frac,more %O A364845 1,2 %A A364845 _Stefano Spezia_, Aug 10 2023