This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364855 #20 Aug 12 2023 09:45:18 %S A364855 3,2,1,7,4,8,6,2,2,1,3,3,6,2,1,3,3,4,6,2,2,1,1,1,5,1,2,1,1,7,4,1,1,4, %T A364855 1,1,1,2,1,1,1,1,1,1,2,1,1,2,2,1,1,1,7,4,8,6,2,1,2,1,3,4,1,1,1,4,8,6, %U A364855 2,2,1,2,2,1,5,1,6,3,3,4,1,1,2,1,5,1,4,1 %N A364855 Initial digit of 3^(3^n) (A055777(n)). %C A364855 This sequence corresponds to the initial digit of 3vvn (since 3^(3^n) = ((((3^3)^3)^...)^3) n-times), where vv indicates weak tetration (see links). %C A364855 The author conjectures that the distribution of the initial digits of the present sequence obey Benford's law or Zipf's law (see links). %C A364855 The corresponding final digit of 3^(3^n) is A010705(n) = 3 if n even or 7 if n odd. %D A364855 A. Iorliam, Natural Laws (Benford's Law and Zipf's Law) For Network Traffic Analysis, In: Cybersecurity in Nigeria. SpringerBriefs in Cybersecurity. Springer, Cham (2019), 3-22. DOI: 10.1007/978-3-030-15210-9_2 %H A364855 Pointless Large numbers stuff by Cookiefonster, <a href="https://sites.google.com/site/pointlesslargenumberstuff/home/2/weakoperators">2.03 The Weak Hyper-Operators</a>. %H A364855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Benford%27s_law">Benford's law</a>. %H A364855 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zipf%27s_law">Zipf's law</a>. %F A364855 a(n) = floor(3^(3^n)/10^floor(log_10(3^(3^n)))). %F A364855 a(n) = A000030(A055777(n)). %e A364855 a(2) = 1, since 3^(3^2) = 3^9 = 19683. %t A364855 Join[{3},Table[Floor[3^(3^n)/10^Floor[Log10[3^(3^n)]]],{n,16}]] %Y A364855 Cf. A000030, A010705 (last digit), A055777, A364789, A364837. %K A364855 nonn,base %O A364855 0,1 %A A364855 _Marco RipĂ _, Aug 10 2023 %E A364855 More terms from _Jinyuan Wang_, Aug 11 2023