This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364860 #7 Aug 12 2023 02:29:08 %S A364860 198,1210,2220,6368,10856,66992,525915,652664,5495264,7684672, %T A364860 13727466,16150628,25640096,26138475,28128368,33642028,34380688, %U A364860 40803868,133471275 %N A364860 Greater of a pair of S-amicable numbers k < m such that s(k) = m and s(m) = k, where s(k) = A364858(k). %C A364860 S-amicable numbers are analogous to amicable numbers (A002025/A002046) as S-perfect numbers (A118372) are analogous to perfect numbers (A000396). %C A364860 The terms are ordered according to their lesser counterparts (A364859). %F A364860 a(n) = A364858(A364859(n)). %e A364860 198 is a term since A364858(198) = 186 < 198, and A364858(186) = 198. %t A364860 seq[nmax_] := Module[{s = {1}, sum, sum2, am = {}, ak}, Do[sum = Total[Select[Divisors[n], MemberQ[s, #] &]]; If[sum <= n, AppendTo[s, n]; If[sum < n, sum2 = Total[Select[Most[Divisors[sum]], MemberQ[s, #] &]]; If[sum2 == n, AppendTo[am, n]]]], {n, 2, nmax}]; am]; seq[10^4] %o A364860 (PARI) lista(nmax) = {my(c = 0, s, s2); for(n=2, nmax, s = sumdiv(n, d, !bittest(c, d)*d) - n; if(s > n, c+=1<<n); if(s < n, s2 = sumdiv(s, d, ((d<s)&&!bittest(c, d))*d); if(s2 == n, print1(n,", "))));} \\ after _M. F. Hasler_ at A181487 %Y A364860 Cf. A000396, A002025, A002046, A118372, A364858, A364859. %K A364860 nonn,more %O A364860 1,1 %A A364860 _Amiram Eldar_, Aug 11 2023