This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364861 #9 Jan 06 2024 19:26:26 %S A364861 5984,7424,21944,39375,56924,77175,82004,84524,89775,109395,116655, %T A364861 158235,174824,180495,185535,188055,193544,200024,209055,235935, %U A364861 238095,240344,245024,250964,256095,261260,262184,263024,266475,279279,282975,283815,294975,297296 %N A364861 Numbers k such that k and k+1 are both S-abundant numbers (A181487). %C A364861 De Koninck and Ivić found that the least number k such that k, k+1, and k+2 are 3 consecutive integers that are S-abundant numbers is 171078830 (which is also the first term of A096536). %H A364861 Amiram Eldar, <a href="/A364861/b364861.txt">Table of n, a(n) for n = 1..10000</a> %H A364861 Jean-Marie De Koninck and Aleksandar Ivić, <a href="https://www.emis.de/journals/PIMB/078/2.html">On a sum of divisors problem</a>, Publications de l'Institut Mathématique (Beograd), New Series, Vol. 64 (78) (1998), pp. 9-20. %H A364861 Wikipedia, <a href="https://en.wikipedia.org/wiki/Granville_number">Granville number</a>. %t A364861 seq[kmax_] := Module[{s = {1}, a = {}, sum, q1 = False, q2}, Do[sum = Total[Select[Divisors[k], MemberQ[s, #] &]]; q2 = sum > k; If[!q2, AppendTo[s, k]]; If[q1 && q2, AppendTo[a, k-1]]; q1 = q2, {k, 2, kmax}]; a]; seq[40000] %o A364861 (PARI) lista(nmax) = {my(c = 0, s, q1 = 0, q2); for(n=2, nmax, if(sumdiv(n, d, !bittest(c, d)*d) > 2*n, c+=1<<n; q2 = 1, q2 = 0); if(q1 && q2, print1(n-1,", ")); q1 = q2) } \\ after _M. F. Hasler_ at A181487 %Y A364861 Subsequence of A181487. %Y A364861 Cf. A096399, A096536, A118372. %K A364861 nonn %O A364861 1,1 %A A364861 _Amiram Eldar_, Aug 11 2023