This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364866 #15 Aug 26 2023 18:17:25 %S A364866 1,1,4,21,124,781,5120,34474,236492,1644222,11543644,81623504, %T A364866 580104672,4137414963,29574658416,211639869236,1514729242092, %U A364866 10832683182538,77342204972120,550791674067623,3908735530965604,27612614422978557,193943797650498016 %N A364866 G.f. satisfies A(x) = 1 + x*A(x)^5 / (1 + x*A(x)^5). %C A364866 a(34) is negative. %H A364866 Seiichi Manyama, <a href="/A364866/b364866.txt">Table of n, a(n) for n = 0..1000</a> %F A364866 a(n) = Sum_{k=0..n} (-1)^k * 2^(n-k) * binomial(n,k) * binomial(5*n+k+1,n) / (5*n+k+1). %F A364866 a(n) = (1/n) * Sum_{k=0..n-1} (-2)^k * binomial(n,k) * binomial(6*n-k,n-1-k) for n > 0. %F A364866 a(n) = (1/n) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * binomial(5*n,k-1) for n > 0. %o A364866 (PARI) a(n) = sum(k=0, n, (-1)^k*2^(n-k)*binomial(n, k)*binomial(5*n+k+1, n)/(5*n+k+1)); %Y A364866 Cf. A291534, A364864, A364865, A365218. %Y A364866 Cf. A002295. %K A364866 sign %O A364866 0,3 %A A364866 _Seiichi Manyama_, Aug 11 2023