cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364867 Primes p such that the multiplicative order of 9 modulo p is (p-1)/2.

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 29, 31, 43, 47, 53, 59, 71, 79, 83, 89, 101, 107, 113, 127, 131, 137, 139, 149, 163, 167, 173, 179, 191, 197, 199, 211, 223, 227, 233, 239, 251, 257, 263, 269, 281, 283, 293, 311, 317, 331, 347, 353, 359, 379, 383, 389, 401, 419, 443, 449, 461, 463, 467, 479, 487
Offset: 1

Views

Author

Jianing Song, Aug 11 2023

Keywords

Comments

Primes p such that the multiplicative order of 9 modulo p is of the maximum possible value.
Primes p such that 3 or -3 (or both) is a primitive root modulo p. Proof of equivalence: let ord(a,k) be the multiplicative order of a modulo p. if ord(3,p) = p-1, then clearly ord(9,p) = (p-1)/2. If ord(-3,p) = p-1, then we also have ord(9,p) = (p-1)/2. Conversely, suppose that ord(9,p) = (p-1)/2, then ord(3,p) = p-1 or (p-1)/2, and ord(-3,p) = p-1 or (p-1)/2. If ord(3,p) = ord(-3,p) = (p-1)/2, then we have that (p-1)/2 is odd and (-1)^((p-1)/2) == 1 (mod p), a contradiction.
A prime p is a term if and only if one of the two following conditions holds: (a) 3 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of 3 modulo p is (p-1)/2 (in this case, we have p == 11 (mod 12) since 3 is a quadratic residue modulo p).
A prime p is a term if and only if one of the two following conditions holds: (a) -3 is a primitive root modulo p; (b) p == 3 (mod 4), and the multiplicative order of -3 modulo p is (p-1)/2 (in this case, we have p == 7 (mod 12) since -3 is a quadratic residue modulo p).
No terms are congruent to 1 modulo 12, since otherwise we would have 9^((p-1)/4) = (+-3)^((p-1)/2) == 1 (mod p). - Jianing Song, May 14 2024

Examples

			7 is a term since the multiplicative order of 9 modulo 7 is 3 = (7-1)/2.
		

Crossrefs

Union of A019334 and A105875.
A105881 is the subsequence of terms congruent to 3 modulo 4.
Cf. A211245 (order of 9 mod n-th prime), A216371.

Programs

  • Mathematica
    okQ[p_] := MultiplicativeOrder[9, p] == (p - 1)/2;
    Select[Prime[Range[100]], okQ] (* Jean-François Alcover, Nov 24 2024 *)
  • PARI
    isA364867(p) = isprime(p) && (p!=3) && znorder(Mod(9, p)) == (p-1)/2
    
  • Python
    from sympy import n_order, nextprime
    from itertools import islice
    def A364867_gen(startvalue=4): # generator of terms >= startvalue
        p = max(startvalue-1,3)
        while (p:=nextprime(p)):
            if n_order(9,p) == p-1>>1:
                yield p
    A364867_list = list(islice(A364867_gen(),20)) # Chai Wah Wu, Aug 11 2023