This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364879 #18 Sep 11 2023 01:47:14 %S A364879 2,6,10,28,126,520,1394,4440,11765,35702,98202,271718,736814,2012631, %T A364879 5478367,14867499,40448112,109944053,298170203,810416222,2200884471, %U A364879 5980529528 %N A364879 a(n) is the smallest number k such that (sum of composites <= k) / (sum of primes <= k) >= n. %C A364879 a(n)+1 is a prime for n = 0, 1, 2, 3, 4, 5, and 7 (thus, for n = 1, 2, 3, 4, 5, and 7, a(n) is the last of a run of consecutive composites), but not for n = 6, nor for any n in 8..16. %C A364879 For n > 0, a(n) is at least the n-th in a run of consecutive composites. a(15) is the 58th in a run of 71 consecutive composites. %F A364879 a(n) = min {k : (Sum_{c<=k, c composite} c)/(Sum_{p<=k, p prime} p) >= n}. %F A364879 a(n) = min {k>1 : k(k+1)-1>=2*A034387(k)*(n+1)}. - _Chai Wah Wu_, Sep 10 2023 %e A364879 Let Sp(k) and Sc(k) be the sums of the primes <= k and the composites <= k, respectively. Then the sums and ratios begin as follows: %e A364879 . %e A364879 k | Sp(k) | Sc(k) | Sc(k)/Sp(k) %e A364879 ---+-------+-------+------------ %e A364879 1 | 0 | 0 | (undefined) %e A364879 2 | 2 | 0 | 0/2 = 0 so a(0) = 2 %e A364879 3 | 5 | 0 | 0/5 = 0 %e A364879 4 | 5 | 4 | 4/5 = 0.8 %e A364879 5 | 10 | 4 | 4/10 = 0.4 %e A364879 6 | 10 | 10 | 10/10 = 1 so a(1) = 6 %e A364879 7 | 17 | 10 | 10/17 = 0.5882... %e A364879 8 | 17 | 18 | 18/17 = 1.0588... %e A364879 9 | 17 | 27 | 27/17 = 1.5882... %e A364879 10 | 17 | 37 | 37/17 = 2.1764... so a(2) = 10 %o A364879 (Python) %o A364879 from itertools import count %o A364879 from sympy import isprime %o A364879 def A364879(n): %o A364879 c, cn, m = 0, 0, n+1<<1 %o A364879 for k in count(2): %o A364879 if isprime(k): %o A364879 c += k %o A364879 cn += k*m %o A364879 if k*(k+1)-1 >= cn: %o A364879 return k # _Chai Wah Wu_, Sep 10 2023 %Y A364879 Cf. A000040, A002808, A007504, A034387, A053767, A101256. %K A364879 nonn,more %O A364879 0,1 %A A364879 _Jon E. Schoenfield_, Sep 10 2023 %E A364879 a(17)-a(21) from _Chai Wah Wu_, Sep 10 2023