cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364892 Row sums of A364891.

This page as a plain text file.
%I A364892 #9 Aug 27 2023 10:29:07
%S A364892 0,0,1,1,2,2,4,5,8,10,15,19,27,34,47,59,79,99,130,162,210,260,332,410,
%T A364892 517,635,794,970,1202,1463,1799,2180,2664,3214,3904,4693,5669,6789,
%U A364892 8163,9740,11658,13865,16527,19592,23267,27496,32538,38343,45223,53142,62488
%N A364892 Row sums of A364891.
%F A364892 a(n) = Sum_{k=1..n} ((-1)^(k-1)*Sum_{j=0..k-1} (-1)^j*(p(n - j*(2*j + 1)) - p(n - (j + 1)*(2*j + 1)))), where p(n) = A000041(n) is the number of partitions of n.
%F A364892 Conjecture: lim_{n->oo} a(n)/A000041(n) = 1/4.
%t A364892 A364891[n_, k_]:=(-1)^(k-1)*Sum[(-1)^j*(PartitionsP[n-j(2j+1)]-PartitionsP[n-(j+1)(2j+1)]), {j, 0, k-1}]; Table[Sum[A364891[n,k],{k,1,n}],{n,1,51}]
%Y A364892 Cf. A000041, A325434, A364891.
%K A364892 nonn
%O A364892 1,5
%A A364892 _Stefano Spezia_, Aug 12 2023