This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364900 #19 Aug 20 2023 10:51:37 %S A364900 1,1,3,2,5,3,7,1,1,5,11,6,13,7,15,2,17,1,19,10,21,11,23,3,1,13,3,14, %T A364900 29,15,31,1,33,17,35,2,37,19,39,5,41,21,43,22,5,23,47,6,1,1,51,26,53, %U A364900 3,55,7,57,29,59,30,61,31,7,2,65,33,67,34,69,35,71,1,73,37,3 %N A364900 The n-volume of the unit regular n-simplex is sqrt(a(n))/A364901(n), with a(n) being squarefree. %C A364900 a(n) = 1 if and only if n = 2*k^2 - 1 or n = 4*k^2 - 4*k for k >= 1. %C A364900 a(n) = a(n+1) = 1 if and only if n = A001333(k)^2 - 2 for even k and A001333(k)^2 - 1 for odd k. %H A364900 Jianing Song, <a href="/A364900/b364900.txt">Table of n, a(n) for n = 0..10000</a> %H A364900 Wikipedia, <a href="https://en.wikipedia.org/wiki/Simplex">Simplex</a> %F A364900 The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = A007913(n+1) for even n and A007913((n+1)/2) for odd n. %e A364900 n | the n-volume of the %e A364900 | unit regular n-simplex %e A364900 2 | sqrt(3)/4 = A120011 %e A364900 3 | sqrt(2)/12 = A020829 %e A364900 4 | sqrt(5)/96 = A364895 %e A364900 5 | sqrt(3)/480 %e A364900 6 | sqrt(7)/5760 %e A364900 7 | 1/20160 %e A364900 8 | 1/215040 %e A364900 9 | sqrt(5)/5806080 %o A364900 (PARI) a(n) = if(n%2, core((n+1)/2), core(n+1)) %Y A364900 Cf. A007913, A364901, A120011, A020829, A364895, A001333. %K A364900 nonn,easy %O A364900 0,3 %A A364900 _Jianing Song_, Aug 12 2023