This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A364901 #17 Aug 20 2023 10:51:41 %S A364901 1,1,4,12,96,480,5760,20160,215040,5806080,116121600,1277337600, %T A364901 30656102400,398529331200,11158821273600,83691159552000, %U A364901 5356234211328000,30351993864192000,3278015337332736000,62282291409321984000,2491291656372879360000,52317124783830466560000 %N A364901 The n-volume of the unit regular n-simplex is sqrt(A364900(n))/a(n), with A364900(n) being squarefree. %H A364901 Jianing Song, <a href="/A364901/b364901.txt">Table of n, a(n) for n = 0..425</a> %H A364901 Wikipedia, <a href="https://en.wikipedia.org/wiki/Simplex">Simplex</a> %F A364901 The n-volume of the unit regular n-simplex is sqrt(n+1)/(n!*2^(n/2)), so a(n) = n! * 2^(n/2) / A000188(n+1) for even n and n! * 2^((n-1)/2) / A000188((n+1)/2) for odd n. It's easy to see that a(n) is an integer. %e A364901 n | the n-volume of the %e A364901 | unit regular n-simplex %e A364901 2 | sqrt(3)/4 = A120011 %e A364901 3 | sqrt(2)/12 = A020829 %e A364901 4 | sqrt(5)/96 = A364895 %e A364901 5 | sqrt(3)/480 %e A364901 6 | sqrt(7)/5760 %e A364901 7 | 1/20160 %e A364901 8 | 1/215040 %e A364901 9 | sqrt(5)/5806080 %o A364901 (PARI) A000188(n) = sqrtint(n/core(n)); %o A364901 a(n) = n! * if(n%2, 2^((n-1)/2)/A000188((n+1)/2), 2^(n/2)/A000188(n+1)) %Y A364901 Cf. A000188, A364900, A120011, A020829, A364895. %K A364901 nonn,easy %O A364901 0,3 %A A364901 _Jianing Song_, Aug 12 2023